Artem D Ivakhnov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8532728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Content of Phenolic Compounds in Lichens in the Tectonic Fault Zones. Izvestiya Vysshikh Uchebnykh Zavedenii, 2022, , 198-213.	0.2	0
2	Preparation of bioactive aerogel material based on sodium alginate and chitosan for controlled release of levomycetin. Polymers for Advanced Technologies, 2021, 32, 3474-3482.	3.2	14
3	Composite aerogel materials based on lignosulfonates and silica: Synthesis, structure, properties. Materials Chemistry and Physics, 2021, 269, 124768.	4.0	8
4	Rapid quantification and screening of nitrogen-containing rocket fuel transformation products by vortex assisted liquid-liquid microextraction and gas chromatography – high-resolution Orbitrap mass spectrometry. Microchemical Journal, 2021, 171, 106821.	4.5	6
5	Formation of supramolecular structure in alginate/chitosan aerogel materials during sol-gel synthesis. Journal of Sol-Gel Science and Technology, 2020, 95, 101-108.	2.4	11
6	Metal-Carbon Composites Based on Lignosulfonates. Izvestiya Vysshikh Uchebnykh Zavedenii, 2020, , 159-168.	0.2	2
7	Selective extraction of terpenoid compounds of Juniperus communis L. wood in the medium of a binary solvent (supercritical CO 2 with modifier). Phytochemical Analysis, 2019, 30, 609-616.	2.4	5
8	Structure and electrophysical properties of carbogels based on the interpolyelectrolyte complex lignosulfonate - chitosan with various composition. Microporous and Mesoporous Materials, 2019, 282, 211-218.	4.4	12
9	Carbon nanomaterials based on interpolyelectrolyte complex lignosulfonate-chitosan. Holzforschung, 2019, 73, 181-187.	1.9	8
10	The Thermal Stability of 1,4-Dioxane at Sub- and Supercritical Temperatures. Russian Journal of Physical Chemistry B, 2018, 12, 1225-1228.	1.3	2
11	SUPERCRITICAL FLUID EXTRACTION OF CAROTENOIDS AND CHLOROPHYLL FROM LEDUM PALUSTRE. Khimiya Rastitel'nogo Syr'ya, 2018, , 61-66.	0.3	2
12	Morphological features of aerogels and carbogels based on lignosulfonates. Holzforschung, 2017, 71, 583-590.	1.9	14
13	Supercritical Fluid Extraction of Usnic Acid from Lichen of Cladonia Genus. Russian Journal of Physical Chemistry B, 2017, 11, 1306-1311.	1.3	11
14	Supercritical Fluid Extraction as a Method of Thermochemical Activation of Wood Cell Walls. Russian Journal of Physical Chemistry B, 2017, 11, 1089-1094.	1.3	3
15	CONVERSION OF PAPER-GRADE KRAFT PULP INTO DISSOLVING-GRADE PULP FOR CELLULOSE ACETATE PRODUCTION. , 2017, , .		0
16	Supercritical fluid extraction of chlorophylls and carotenoids from White Sea algae. Russian Journal of Physical Chemistry B, 2016, 10, 1244-1247.	1.3	6
17	Relationship of the structure and ion-exchange properties of polyelectrolyte complexes based on biopolymers. Russian Journal of Applied Chemistry, 2015, 88, 103-109.	0.5	15
18	Supercritical fluid extraction of carotenoids from shantane carrot. Russian Journal of Physical Chemistry B, 2014, 8, 963-966.	1.3	9

ARTEM D ΙVAKHNOV

#	Article	IF	CITATIONS
19	The influence of supercritical carbon dioxide parameters on cellulose acetylization and properties of cellulose acetates. Russian Journal of Physical Chemistry B, 2013, 7, 885-888.	1.3	1
20	Oxidative delignification of wood in the supercritical carbon dioxide medium. 4. Acetylization of cellulose in the supercritical carbon dioxide medium. Russian Journal of Physical Chemistry B, 2011, 5, 1250-1252.	1.3	3
21	The oxidative delignification of wood in supercritical carbon dioxide: The functionalization of coniferous lignin. Russian Journal of Physical Chemistry B, 2010, 4, 1077-1084.	1.3	2
22	The oxidative delignification of wood in supercritical carbon dioxide: 3. The chemical composition of fibrous half-finished products. Russian Journal of Physical Chemistry B, 2010, 4, 1234-1240.	1.3	0
23	Semiconductor carbon-nitrogen nanomaterials based on interpolyelectrolyte complex sodium lignosulfonate-chitosan. Journal of Wood Chemistry and Technology, 0, , 1-12.	1.7	1