Arivazhagan V

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8532082/publications.pdf

Version: 2024-02-01

1040056 752698 23 413 9 20 citations h-index g-index papers 23 23 23 656 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Mesocrystal TiO ₂ films: <i>iin situ</i> topotactic transformation and application in dye-sensitised solar cells. Sustainable Energy and Fuels, 2022, 6, 502-511.	4.9	5
2	Indoor light harvesting lead-free 2-aminothiazolium bismuth iodide solar cells. Sustainable Energy and Fuels, 2022, 6, 3179-3186.	4.9	7
3	All-vacuum deposited and thermally stable perovskite solar cells with F4-TCNQ/CuPc hole transport layer. Nanotechnology, 2020, 31, 065401.	2.6	14
4	Interface engineering of C60/ fluorine doped tin oxide on the photovoltaic performance of perovskite solar cells using the physical vapor deposition technique. Journal Physics D: Applied Physics, 2019, 52, 225104.	2.8	13
5	A ternary organic electron transport layer for efficient and photostable perovskite solar cells under full spectrum illumination. Journal of Materials Chemistry A, 2018, 6, 5566-5573.	10.3	35
6	Effect of strain in PbSe/ZnPc stacked layers prepared by thermal evaporation method. Journal of Materials Science: Materials in Electronics, 2018, 29, 7041-7047.	2.2	0
7	Wetting behaviors and applications of metal-catalyzed CVD grown graphene. Journal of Materials Chemistry A, 2018, 6, 22437-22464.	10.3	33
8	CH ₃ NH ₃ PbBr ₃ Quantum Dot-Induced Nucleation for High Performance Perovskite Light-Emitting Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 22320-22328.	8.0	32
9	In-situ synthesis of Co3O4/graphite nanocomposite for high-performance supercapacitor electrode applications. Applied Surface Science, 2017, 403, 578-583.	6.1	62
10	Crystallization of amorphous InSe matrix in PbTe–InSe multilayer nanocomposite structure. Journal of Materials Science: Materials in Electronics, 2017, 28, 13613-13619.	2.2	0
11	Efficient and highly light stable planar perovskite solar cells with graphene quantum dots doped PCBM electron transport layer. Nano Energy, 2017, 40, 345-351.	16.0	101
12	Atomic resolution imaging of beryl: an investigation of the nanoâ€channel occupation. Journal of Microscopy, 2017, 265, 245-250.	1.8	9
13	Quantum size effect on the layer by layer assembly of PbTe–InSe multilayer nanocomposite structures. Journal of Alloys and Compounds, 2015, 646, 96-100.	5 . 5	1
14	Quantum confinement of PbSe nanocrystals embedded in a spacer ZnSe matrix for solar cell applications. Solar Energy, 2014, 106, 38-42.	6.1	4
15	Quantum size effect on cubic PbTe nanocrystals embedded in amorphous InSe thin film matrix. Superlattices and Microstructures, 2014, 75, 901-907.	3.1	6
16	Structural and optical properties of ZnSe thin films stacked with PbSe submonolayers. Applied Physics A: Materials Science and Processing, 2014, 116, 1773-1778.	2.3	7
17	Observation on array of PbTe nanocrystals embedded in amorphous InSe multiple quantum wells. Vacuum, 2014, 109, 120-123.	3.5	1
18	Complementary NIR absorption of ZnSe induced by multiple PbSe submonolayers by vacuum deposition technique. Vacuum, 2014, 99, 95-98.	3.5	10

#	Article	IF	CITATIONS
19	Impact of barrier thickness on the strain effect in ZnSe/ZnS multiple quantum well structure. Superlattices and Microstructures, 2013, 59, 40-46.	3.1	5
20	Quantum confinement in two dimensional layers of PbSe/ZnSe multiple quantum well structures. Applied Physics Letters, 2013, 102, 242110.	3.3	7
21	Investigation of the quantum well width on the size effect of PbSe/ZnSe multiple quantum well structures by non-epitaxial growth. Journal of Alloys and Compounds, 2013, 577, 431-435.	5.5	6
22	Study on the formation of PbSe nanoclusters at the interfaces of PbSe/ZnSe multiple quantum well structure. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 53, 120-123.	2.7	5
23	Impact of thickness on vacuum deposited PbSe thin films. Vacuum, 2012, 86, 1092-1096.	3.5	50