
Huibin Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8531688/publications.pdf Version: 2024-02-01

HUIRIN CHANC

#	Article	IF	CITATIONS
1	High-throughput coating with biodegradable antimicrobial pullulan fibres extends shelf life and reduces weight loss in an avocado model. Nature Food, 2022, 3, 428-436.	6.2	38
2	Recreating the heart's helical structure-function relationship with focused rotary jet spinning. Science, 2022, 377, 180-185.	6.0	47
3	Rheological behavior and fiber spinning of polyacrylonitrile (PAN)/Carbon nanotube (CNT) dispersions at high CNT loading. Polymer, 2021, 215, 123369.	1.8	14
4	Fattening chips: hypertrophy, feeding, and fasting of human white adipocytes <i>in vitro</i> . Lab on A Chip, 2020, 20, 4152-4165.	3.1	10
5	Development of Biodegradable and Antimicrobial Electrospun Zein Fibers for Food Packaging. ACS Sustainable Chemistry and Engineering, 2020, 8, 15354-15365.	3.2	63
6	Determining the Orientation and Interfacial Stress Transfer of Boron Nitride Nanotube Composite Fibers for Reinforced Polymeric Materials. ACS Applied Nano Materials, 2019, 2, 6670-6676.	2.4	15
7	Carbon fibers from polyacrylonitrile/cellulose nanocrystal nanocomposite fibers. Carbon, 2019, 145, 764-771.	5.4	41
8	High-Performance Electrodes for a Hybrid Supercapacitor Derived from a Metal–Organic Framework/Graphene Composite. ACS Applied Energy Materials, 2019, 2, 5029-5038.	2.5	48
9	Polyacrylonitrile/boron nitride nanotubes composite precursor and carbon fibers. Carbon, 2019, 147, 419-426.	5.4	16
10	Stabilization Study of Polyacrylonitrile/Cellulose Nanocrystals Composite Fibers. ACS Applied Polymer Materials, 2019, 1, 1015-1021.	2.0	12
11	Polyacrylonitrile sheath and polyacrylonitrile/lignin core bi-component carbon fibers. Carbon, 2019, 149, 165-172.	5.4	29
12	Cellulose nanocrystals effect on the stabilization of polyacrylonitrile composite films. Carbon, 2018, 134, 92-102.	5.4	18
13	Post-sulfonation of cellulose nanofibrils with a one-step reaction to improve dispersibility. Carbohydrate Polymers, 2018, 181, 247-255.	5.1	57
14	Dual-Excitation Nanocellulose Plasmonic Membranes for Molecular and Cellular SERS Detection. ACS Applied Materials & Interfaces, 2018, 10, 18380-18389.	4.0	42
15	Orientation and interfacial stress transfer of cellulose nanocrystal nanocomposite fibers. Polymer, 2017, 110, 228-234.	1.8	31
16	Rheological behavior of polyacrylonitrile and polyacrylonitrile/lignin blends. Polymer, 2017, 111, 177-182.	1.8	37
17	Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films. Cellulose, 2017, 24, 1745-1758.	2.4	30
18	Structural and Functional Fibers. Annual Review of Materials Research, 2017, 47, 331-359.	4.3	62

HUIBIN CHANG

#	Article	IF	CITATIONS
19	Ductile polyacrylonitrile fibers with high cellulose nanocrystals loading. Polymer, 2017, 122, 332-339.	1.8	20
20	Stress transfer in nanocomposites enabled by poly(methyl methacrylate) wrapping of carbon nanotubes. Polymer, 2017, 130, 191-198.	1.8	17
21	A comparative guide to controlled hydrophobization of cellulose nanocrystals via surface esterification. Cellulose, 2016, 23, 1825-1846.	2.4	66
22	Individually Dispersed Wood-Based Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2016, 8, 5768-5771.	4.0	36
23	Gel Spinning of Polyacrylonitrile/Cellulose Nanocrystal Composite Fibers. ACS Biomaterials Science and Engineering, 2015, 1, 610-616.	2.6	51
24	Preparation of Lu2Ti2O9 nano-powders from oxides by molten salt method. Materials Letters, 2012, 66, 39-41.	1.3	9
25	Synthesis of Lu2Ti2O7 nano-rods from molten salt with two-step calcinations. Materials Letters, 2012, 79, 219-221.	1.3	7
26	Synthesis of Lu2Ti2O7 powders by molten salt method. Materials Chemistry and Physics, 2011, 130, 755-759.	2.0	9
27	Microstructure and Dielectric Properties of Strontium Bismuth Niobium Ceramics Prepared by Molten Salt Method. Advanced Materials Research, 2011, 197-198, 589-592.	0.3	0
28	Synthesis and characterization of Bi3NbTiO9 powders prepared by molten salt method. Journal of Alloys and Compounds, 2010, 505, 542-548.	2.8	15
29	Formation Mechanism of SrBi ₂ Nb ₂ O ₉ Prepared by Melting Salt Method. Advanced Materials Research, 0, 177, 12-15.	0.3	0
30	Influence of Different Precursors upon Characterization of Bismuth Titanate Powders Prepared by Chemical Methods. Advanced Materials Research, 0, 284-286, 1447-1451.	0.3	0