
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8531463/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6, 605-613.	19.8	1,307
2	Highâ€Valentâ€Cobaltâ€Catalyzed Câ^'H Functionalization Based on Concerted Metalation–Deprotonation and Singleâ€Electronâ€Transfer Mechanisms. ChemCatChem, 2016, 8, 1242-1263.	1.8	270
3	Alkyl Sideâ€Chain Engineering in Wideâ€Bandgap Copolymers Leading to Power Conversion Efficiencies over 10%. Advanced Materials, 2017, 29, 1604251.	11.1	213
4	Airâ€Stable, Leadâ€Free Zeroâ€Dimensional Mixed Bismuthâ€Antimony Perovskite Single Crystals with Ultraâ€broadband Emission. Angewandte Chemie - International Edition, 2019, 58, 2725-2729.	7.2	199
5	Colloidal Synthesis and Optical Properties of Allâ€Inorganic Lowâ€Dimensional Cesium Copper Halide Nanocrystals. Angewandte Chemie - International Edition, 2019, 58, 16087-16091.	7.2	192
6	Cooperative Multifunctional Organocatalysts for Ambient Conversion of Carbon Dioxide into Cyclic Carbonates. ACS Catalysis, 2018, 8, 9945-9957.	5.5	188
7	Copper-Catalyzed Direct Amination of Quinoline <i>N</i> -Oxides via C–H Bond Activation under Mild Conditions. Organic Letters, 2014, 16, 1840-1843.	2.4	167
8	Leadâ€Free Sodium–Indium Double Perovskite Nanocrystals through Doping Silver Cations for Bright Yellow Emission. Angewandte Chemie - International Edition, 2019, 58, 17231-17235.	7.2	166
9	Mechanistic insights into cobalt(<scp>ii</scp> / <scp>iii</scp>)-catalyzed C–H oxidation: a combined theoretical and experimental study. Chemical Science, 2015, 6, 7059-7071.	3.7	164
10	Tandem Silver Cluster Isomerism and Mixed Linkers to Modulate the Photoluminescence of Clusterâ€Assembled Materials. Angewandte Chemie - International Edition, 2018, 57, 8560-8566.	7.2	161
11	Organic Solar Cells Based on a 2D Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]difuran onjugated Polymer with Highâ€₽ower Conversion Efficiency. Advanced Materials, 2015, 27, 6969-6975.	11.1	151
12	A Crystalline Copper(II) Coordination Polymer for the Efficient Visibleâ€Lightâ€Driven Generation of Hydrogen. Angewandte Chemie - International Edition, 2016, 55, 2073-2077.	7.2	140
13	Efficient Thermally Activated Delayed Fluorescence from Allâ€Inorganic Cesium Zirconium Halide Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2020, 59, 21925-21929.	7.2	126
14	A 1,8-Naphthyridine-Based Fluorescent Chemodosimeter for the Rapid Detection of Zn2+ and Cu2+. Organic Letters, 2008, 10, 5115-5118.	2.4	125
15	Silver-catalyzed decarboxylative radical cascade cyclization toward benzimidazo[2,1- <i>a</i>]isoquinolin-6(5 <i>H</i>)-ones. Chemical Communications, 2019, 55, 2861-2864.	2.2	114
16	Cobalt(II)-Catalyzed C–H Amination of Arenes with Simple Alkylamines. Organic Letters, 2016, 18, 1318-1321.	2.4	108
17	Recent Advances on Computational Investigations of <i>N</i> â€Heterocyclic Carbene Catalyzed Cycloaddition/Annulation Reactions: Mechanism and Origin of Selectivities. ChemCatChem, 2018, 10, 338-360.	1.8	106
18	Detection of Micro-Scale Li Dendrite via H2 Gas Capture for Early Safety Warning. Joule, 2020, 4, 1714-1729.	11.7	105

#	Article	IF	CITATIONS
19	Fundamental Reaction Pathway and Free Energy Profile for Inhibition of Proteasome by Epoxomicin. Journal of the American Chemical Society, 2012, 134, 10436-10450.	6.6	100
20	N-Heterocyclic Carbene (NHC)-Catalyzed sp ³ β-C–H Activation of Saturated Carbonyl Compounds: Mechanism, Role of NHC, and Origin of Stereoselectivity. ACS Catalysis, 2016, 6, 279-289.	5.5	99
21	Doped Zeroâ€Dimensional Cesium Zinc Halides for Highâ€Efficiency Blue Light Emission. Angewandte Chemie - International Edition, 2020, 59, 21414-21418.	7.2	97
22	Size effect of lead-free halide double perovskite on luminescence property. Science China Chemistry, 2019, 62, 1405-1413.	4.2	95
23	High Performance Organic Solar Cells Based on a Twisted Bay ubstituted Tetraphenyl Functionalized Perylenediimide Electron Acceptor. Advanced Energy Materials, 2015, 5, 1500032.	10.2	93
24	Direct regioselective phosphonation of heteroaryl N-oxides with H-phosphonates under metal and external oxidant free conditions. Chemical Communications, 2014, 50, 14409-14411.	2.2	84
25	Extension of indacenodithiophene backbone conjugation enables efficient asymmetric A–D–A type non-fullerene acceptors. Journal of Materials Chemistry A, 2018, 6, 18847-18852.	5.2	80
26	Colloidal Synthesis and Optical Properties of Allâ€Inorganic Lowâ€Dimensional Cesium Copper Halide Nanocrystals. Angewandte Chemie, 2019, 131, 16233-16237.	1.6	78
27	DFT perspective toward [3 + 2] annulation reaction of enals with α-ketoamides through NHC and BrĂ,nsted acid cooperative catalysis: mechanism, stereoselectivity, and role of NHC. Organic Chemistry Frontiers, 2016, 3, 190-203.	2.3	74
28	Copper-Catalyzed Radical Cascade Cyclization To Access 3-Sulfonated Indenones with the AIE Phenomenon. Journal of Organic Chemistry, 2018, 83, 14419-14430.	1.7	74
29	Catalytic Mechanisms for Cofactor-Free Oxidase-Catalyzed Reactions: Reaction Pathways of Uricase-Catalyzed Oxidation and Hydration of Uric Acid. ACS Catalysis, 2017, 7, 4623-4636.	5.5	71
30	Organocatalytic asymmetric N-sulfonyl amide C-N bond activation to access axially chiral biaryl amino acids. Nature Communications, 2020, 11, 946.	5.8	71
31	Coupling of Ru and Oâ€Vacancy on 2D Moâ€Based Electrocatalyst Via a Solidâ€Phase Interface Reaction Strategy for Hydrogen Evolution Reaction. Advanced Energy Materials, 2021, 11, 2100141.	10.2	71
32	Peroxides as "Switches―of Dialkyl <i>H</i> -Phosphonate: Two Mild and Metal-Free Methods for Preparation of 2-Acylbenzothiazoles and Dialkyl Benzothiazol-2-ylphosphonates. Journal of Organic Chemistry, 2014, 79, 8407-8416.	1.7	68
33	Insertion of chlorine atoms onto π-bridges of conjugated polymer enables improved photovoltaic performance. Nano Energy, 2019, 58, 220-226.	8.2	67
34	A mitochondrial-targeted ratiometric probe for detecting intracellular H2S with high photostability. Chinese Chemical Letters, 2021, 32, 1799-1802.	4.8	65
35	Insights into the N-Heterocyclic Carbene (NHC)-Catalyzed Oxidative γ-C(sp ³)–H Deprotonation of Alkylenals and Cascade [4 + 2] Cycloaddition with Alkenylisoxazoles. Journal of Organic Chemistry, 2018, 83, 8543-8555.	1.7	61
36	Highâ€Valent Cobaltâ€Catalyzed Câ^'H Activation/Annulation of 2â€Benzamidopyridine 1â€Oxide with Terminal Alkyne: A Combined Theoretical and Experimental Study. Advanced Synthesis and Catalysis, 2018, 360, 2668-2677.	2.1	61

#	Article	IF	CITATIONS
37	Reaction Pathway and Free Energy Profile for Papain-Catalyzed Hydrolysis of <i>N</i> -Acetyl-Phe-Gly 4-Nitroanilide. Biochemistry, 2013, 52, 5145-5154.	1.2	59
38	Insights into Stereoselective Aminomethylation Reaction of α,β-Unsaturated Aldehyde with N,O-Acetal via N-Heterocyclic Carbene and BrÃ,nsted Acid/Base Cooperative Organocatalysis. Journal of Organic Chemistry, 2016, 81, 5370-5380.	1.7	59
39	Influence of reaction conditions on product distribution in the green oxidation of cyclohexene to adipic acid with hydrogen peroxide. Catalysis Today, 2011, 175, 619-624.	2.2	58
40	Theoretical Investigations toward the [4 + 2] Cycloaddition of Ketenes with <i>N</i> -Benzoyldiazenes Catalyzed by N-Heterocyclic Carbenes: Mechanism and Enantioselectivity. Journal of Organic Chemistry, 2012, 77, 10729-10737.	1.7	57
41	Lead-Free Small-Bandgap Cs ₂ CuSbCl ₆ Double Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 6463-6467.	2.1	57
42	Computational Study on γ-C–H Functionalization of α,β-Unsaturated Ester Catalyzed by N-Heterocyclic Carbene: Mechanisms, Origin of Stereoselectivity, and Role of Catalyst. Journal of Organic Chemistry, 2017, 82, 13043-13050.	1.7	55
43	DFT Study on the Mechanisms and Stereoselectivities of the [4 + 2] Cycloadditions of Enals and Chalcones Catalyzed by N-Heterocyclic Carbene. Journal of Organic Chemistry, 2014, 79, 3069-3078.	1.7	52
44	Highly Enantioselective Catalytic System for Asymmetric Copolymerization of Carbon Dioxide and Cyclohexene Oxide. Chemistry - A European Journal, 2014, 20, 12394-12398.	1.7	51
45	Steric Engineering of Alkylthiolation Side Chains to Finely Tune Miscibility in Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2019, 9, 1802686.	10.2	51
46	Prediction on the origin of selectivities of NHC-catalyzed asymmetric dearomatization (CADA) reactions. Catalysis Science and Technology, 2019, 9, 465-476.	2.1	50
47	Insights into N-heterocyclic carbene-catalyzed [3 + 4] annulation reactions of 2-bromoenals with N-Ts hydrazones. Organic Chemistry Frontiers, 2018, 5, 2739-2748.	2.3	49
48	Atroposelective isoquinolinone synthesis through cobalt-catalysed C–H activation and annulation. , 2022, 1, 709-718.		49
49	A quantum mechanical study of the mechanism and stereoselectivity of the N-heterocyclic carbene catalyzed [4 + 2] annulation reaction of enals with azodicarboxylates. Organic Chemistry Frontiers, 2015, 2, 874-884.	2.3	48
50	Insights into NHC-catalyzed oxidative α-C(sp ³)–H activation of aliphatic aldehydes and cascade [2 + 3] cycloaddition with azomethine imines. Catalysis Science and Technology, 2019, 9, 2514-2522.	2.1	48
51	Computational study on NHC-catalyzed enantioselective and chemoselective fluorination of aliphatic aldehydes. Organic Chemistry Frontiers, 2017, 4, 1987-1998.	2.3	47
52	A DFT study on enantioselective synthesis of aza-β-lactams via NHC-catalyzed [2+2] cycloaddition of ketenes with diazenedicarboxylates. Journal of Molecular Catalysis A, 2011, 334, 108-115.	4.8	46
53	DFT Study on the Mechanisms and Diastereoselectivities of Lewis Acid-Promoted Ketene–Alkene [2 + 2] Cycloadditions: What is the Role of Lewis Acid in the Ketene and C = X (X = O, CH ₂ , and NH) [2 + 2] Cycloaddition Reactions?. Journal of Physical Chemistry A, 2014, 118, 4288-4300.	1.1	46
54	Prediction of NHC-catalyzed chemoselective functionalizations of carbonyl compounds: a general mechanistic map. Chemical Science, 2020, 11, 7214-7225.	3.7	44

#	#	Article	IF	CITATIONS
Ę	55	Prediction on the Origin of Selectivities in Base ontrolled Switchable NHC atalyzed Transformations. Chemistry - an Asian Journal, 2019, 14, 293-300.	1.7	42
5	56	Insights into N-Heterocyclic Carbene-Catalyzed Oxidative α-C(sp ³)–H Activation of Aliphatic Aldehydes and Cascade [2 + 2] Cycloaddition with Ketimines. Journal of Organic Chemistry, 2019, 84, 6117-6125.	1.7	42
Ę	57	NHC-Catalyzed Aldol-Like Reactions of Allenoates with Isatins: Regiospecific Syntheses of Î ³ -Functionalized Allenoates. Organic Letters, 2019, 21, 1306-1310.	2.4	42
Ę	58	Nonâ€Fullerene Organic Solar Cells Based on Benzo[1,2â€b:4,5â€bâ€2]difuranâ€Conjugated Polymer with 14% Efficiency. Advanced Functional Materials, 2020, 30, 1906809.	7.8	41
Ę	59	Competing mechanisms and origins of chemo- and stereo-selectivities of NHC-catalyzed reactions of enals with 2-aminoacrylates. Catalysis Science and Technology, 2018, 8, 4229-4240.	2.1	40
e	60	Atroposelective Synthesis of Axially Chiral 4-Aryl α-Carbolines via <i>N</i> -Heterocyclic Carbene Catalysis. Organic Letters, 2021, 23, 4267-4272.	2.4	40
e	51	Asymmetric Carbeneâ€Catalyzed Oxidation of Functionalized Aldimines as 1,4â€Dipoles. Angewandte Chemie - International Edition, 2021, 60, 7913-7919.	7.2	39
e	62	DFT Investigation on Mechanisms and Stereoselectivities of [2 + 2 + 2] Multimolecular Cycloaddition of Ketenes and Carbon Disulfide Catalyzed by N-Heterocyclic Carbenes. Journal of Organic Chemistry, 2013, 78, 11849-11859.	1.7	38
e	53	A DFT study on NHC-catalyzed intramolecular aldehyde–ketone crossed-benzoin reaction: mechanism, regioselectivity, stereoselectivity, and role of NHC. Organic and Biomolecular Chemistry, 2016, 14, 6577-6590.	1.5	38
e	54	Insights into highly selective ring expansion of oxaziridines under Lewis base catalysis: a DFT study. Organic Chemistry Frontiers, 2019, 6, 679-687.	2.3	38
e	65	Multiple Functional Organocatalyst-Promoted Inert C–C Activation: Mechanism and Origin of Selectivities. ACS Catalysis, 2021, 11, 3443-3454.	5.5	38
e	66	Insights into the Unexpected Chemoselectivity for the N-Heterocyclic Carbene-Catalyzed Annulation Reaction of Allenals with Chalcones. Journal of Organic Chemistry, 2015, 80, 8619-8630.	1.7	37
e	67	Fundamental Reaction Pathway for Peptide Metabolism by Proteasome: Insights from First-Principles Quantum Mechanical/Molecular Mechanical Free Energy Calculations. Journal of Physical Chemistry B, 2013, 117, 13418-13434.	1.2	36
e	68	DFT study on the reaction mechanisms and stereoselectivities of NHC-catalyzed [2 + 2] cycloaddition between arylalkylketenes and electron-deficient benzaldehydes. Organic and Biomolecular Chemistry, 2014, 12, 6374.	1.5	36
e	69	Mechanisms and stereoselectivities of the Rh(<scp>i</scp>)-catalyzed carbenoid carbon insertion reaction of benzocyclobutenol with diazoester. Organic and Biomolecular Chemistry, 2015, 13, 6587-6597.	1.5	36
7	70	A computational study on the N-heterocyclic carbene-catalyzed C _{sp2} –C _{sp3} bond activation/[4+2] cycloaddition cascade reaction of cyclobutenones with imines: a new application of the conservation principle of molecular orbital symmetry. Physical Chemistry Chemical Physics, 2016, 18, 19933-19943.	1.3	36
7	71	Leadâ€Free Sodium–Indium Double Perovskite Nanocrystals through Doping Silver Cations for Bright Yellow Emission. Angewandte Chemie, 2019, 131, 17391-17395.	1.6	36
7	72	Manganese Catalyzed Direct Amidation of Esters with Amines. Journal of Organic Chemistry, 2021, 86, 2339-2358.	1.7	36

#	Article	IF	CITATIONS
73	Insights into the NHC-catalyzed cascade Michael/aldol/lactamization reaction: mechanism and origin of stereoselectivity. Organic Chemistry Frontiers, 2018, 5, 2065-2072.	2.3	35
74	Insights into the Oxidative Palladiumâ€Catalyzed Regioselective Synthesis of 3â€Arylindoles from Nâ~Tsâ€Anilines and Styrenes: A Computational Study. ChemCatChem, 2019, 11, 780-789.	1.8	35
75	A Multiheteroatom [3,3]-Sigmatropic Rearrangement: Disproportionative Entries into 2-(<i>N</i> -Heteroaryl)methyl Phosphates and α-Keto Phosphates. Organic Letters, 2017, 19, 5864-5867.	2.4	34
76	Insights into the Nâ€Heterocyclic Carbene (NHC)â€Catalyzed Intramolecular Cyclization of Aldimines: General Mechanism and Role of Catalyst. Chemistry - an Asian Journal, 2018, 13, 1710-1718.	1.7	34
77	Asymmetric A–D–π–A-type nonfullerene small molecule acceptors for efficient organic solar cells. Journal of Materials Chemistry A, 2019, 7, 19348-19354.	5.2	33
78	Insights into <i>N</i> â€Heterocyclic Carbeneâ€Catalyzed [4+2] Annulation Reaction of Enals with Nitroalkenes: Mechanisms, Origin of Chemo―and Stereoselectivity, and Role of Catalyst. Chemistry - an Asian Journal, 2016, 11, 3046-3054.	1.7	32
79	A DFT study on PBu ₃ -catalyzed intramolecular cyclizations of N-allylic substituted α-amino nitriles for the formation of functionalized pyrrolidines: mechanisms, selectivities, and the role of catalysts. Organic and Biomolecular Chemistry, 2016, 14, 3130-3141.	1.5	32
80	Mitochondria-dependent benzothiadiazole-based molecule probe for quantitatively intracellular pH imaging. Dyes and Pigments, 2017, 145, 576-583.	2.0	32
81	High-efficiency organic solar cells enabled by an alcohol-washable solid additive. Science China Chemistry, 2021, 64, 2161-2168.	4.2	32
82	lridium(<scp>iii</scp>) complexes bearing oxadiazol-substituted amide ligands: color tuning and application in highly efficient phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 9146-9156.	2.7	31
83	Insights into the isothiourea-catalyzed asymmetric [4 + 2] annulation of phenylacetic acid with alkylidene pyrazolone. Organic and Biomolecular Chemistry, 2018, 16, 2301-2311.	1.5	31
84	Recycling of silicon from silicon cutting waste by Al-Si alloying in cryolite media and its mechanism analysis. Environmental Pollution, 2020, 265, 114892.	3.7	30
85	Insight into the organocatalytic arylation of azonaphthalenes with \hat{l}_{\pm} -chloroaldehydes: the general mechanism and origin of selectivities. Chemical Communications, 2021, 57, 219-222.	2.2	29
86	Diradical Generation via Relayed Proton-Coupled Electron Transfer. Journal of the American Chemical Society, 2022, 144, 3137-3145.	6.6	29
87	Fundamental reaction pathway and free energy profile of proteasome inhibition by syringolin A (SylA). Organic and Biomolecular Chemistry, 2015, 13, 6857-6865.	1.5	28
88	DFT Study on the Mechanism and Stereoselectivity of NHC-Catalyzed Synthesis of Substituted Trifluoromethyl Dihydropyranones with Contiguous Stereocenters. Journal of Organic Chemistry, 2016, 81, 868-877.	1.7	28
89	High efficiency non-fullerene organic solar cells without electron transporting layers enabled by Lewis base anion doping. Nano Energy, 2018, 51, 736-744.	8.2	28
90	Predicting the origin of selectivity in NHC-catalyzed ring opening of formylcyclopropane: a theoretical investigation. Catalysis Science and Technology, 2021, 11, 332-337.	2.1	28

#	Article	IF	CITATIONS
91	A theoretical study on the mechanisms of the reactions between 1,3-dialkynes and ammonia derivatives for the formation of five-membered N-heterocycles. Organic and Biomolecular Chemistry, 2014, 12, 7503-7514.	1.5	27
92	Origin of Regio―and Stereoselectivity in the NHCâ€catalyzed Reaction of Alkyl Pyridinium with Aliphatic Enal. ChemCatChem, 2020, 12, 1068-1074.	1.8	27
93	Highly Active and Robust Ruthenium Complexes Based on Hemilability of Hybrid Ligands for C–H Oxidation. Journal of Organic Chemistry, 2020, 85, 4324-4334.	1.7	27
94	A DFT study of the enantioselective reduction of prochiral ketones promoted by pinene-derived amino alcohols. Tetrahedron: Asymmetry, 2009, 20, 1020-1026.	1.8	26
95	Influence of aromatic heterocycle of conjugated side chains on photovoltaic performance of benzodithiophene-based wide-bandgap polymers. Polymer Chemistry, 2016, 7, 4036-4045.	1.9	26
96	Synthesis and properties of benzothiadiazole-pyridine system: TheÂmodulation of optical feature. Dyes and Pigments, 2017, 137, 135-142.	2.0	26
97	Theoretical study on the mechanism and enantioselectivity of NHC-catalyzed intramolecular S _N 2′ nucleophilic substitution: what are the roles of NHC and DBU?. Organic Chemistry Frontiers, 2018, 5, 1493-1501.	2.3	26
98	Two Birds with One Stone: High Efficiency and Low Synthetic Cost for Benzotriazoleâ€Based Polymer Solar Cells by a Simple Chemical Approach. Advanced Energy Materials, 2020, 10, 2002142.	10.2	26
99	Unveiling the Chemo- and Stereoselectivities of NHC-Catalyzed Reactions of an Aliphatic Ester with Aminochalcone. Journal of Organic Chemistry, 2020, 85, 8437-8446.	1.7	26
100	Theoretical Model for N-Heterocyclic Carbene-Catalyzed Desymmetrizing [4 + 1] and [4 + 2] Annulations of an Enal and Aryldialdehyde with 1,3-Cyclopentenedione. Organic Letters, 2021, 23, 2421-2425.	2.4	26
101	DFT Study on the Mechanisms of Stereoselective C(2)-Vinylation of 1-Substituted Imidazoles with 3-Phenyl-2-propynenitrile. Journal of Physical Chemistry A, 2009, 113, 11035-11041.	1.1	25
102	Theoretical Investigations toward the Asymmetric Insertion Reaction of Diazoester with Aldehyde Catalyzed by N-Protonated Chiral Oxazaborolidine: Mechanisms and Stereoselectivity. Journal of Physical Chemistry A, 2015, 119, 8422-8431.	1.1	25
103	With metal or not? a computationally predicted rule for a dirhodium catalyst in [3+3] cycloadditions of triazole with thiirane. Chemical Communications, 2020, 56, 4732-4735.	2.2	25
104	Insights into N-heterocyclic carbene and Lewis acid cooperatively catalyzed oxidative [3 + 3] annulation reactions of α,β-unsaturated aldehyde with 1,3-dicarbonyl compounds. Organic Chemistry Frontiers, 2020, 7, 1113-1121.	2.3	25
105	Asymmetric Carbeneâ€Catalyzed Oxidation of Functionalized Aldimines as 1,4â€Dipoles. Angewandte Chemie, 2021, 133, 7992-7998.	1.6	25
106	Highly Stereo-Controlled Synthesis of Fatty Acid-Derived Cyclic Carbonates by Using Iron(II) Complex and Nucleophilic Halide. Journal of Organic Chemistry, 2019, 84, 11407-11416.	1.7	24
107	Efficient Thermally Activated Delayed Fluorescence from Allâ€Inorganic Cesium Zirconium Halide Perovskite Nanocrystals. Angewandte Chemie, 2020, 132, 22109-22113.	1.6	24
108	Prediction on the origin of chemoselectivity in Lewis base-mediated competition cyclizations between allenoates and chalcones: a computational study. Organic Chemistry Frontiers, 2019, 6, 2692-2700.	2.3	23

#	Article	IF	CITATIONS
109	Mechanisms of the cascade synthesis of substituted 4â€aminoâ€1,2,4â€triazolâ€3â€one from huisgen zwitterion and aldehyde hydrazone: A DFT study. Journal of Computational Chemistry, 2012, 33, 715-722.	1.5	22
110	Neutral and Cationic NCN Pincer Platinum(II) Complexes with 1,3-Bis(benzimidazol-2′-yl)benzene Ligands: Synthesis, Structures, and Their Photophysical Properties. Organometallics, 2014, 33, 1563-1573.	1.1	22
111	Effects of Intercalated Molecules in Graphene Oxide on the Interlayer Channels for Anhydrous Proton Conduction. Industrial & Engineering Chemistry Research, 2016, 55, 11931-11942.	1.8	22
112	High-performance wide-bandgap copolymers based on indacenodithiophene and indacenodithieno[3,2-b]thiophene units. Journal of Materials Chemistry C, 2017, 5, 7777-7783.	2.7	22
113	Theoretical investigations of the Ir-catalyzed direct borylation of B(3,6)–H of <i>o</i> -carborane: the actual catalyst, mechanism, and origin of regioselectivity. Catalysis Science and Technology, 2018, 8, 5165-5177.	2.1	22
114	Substitution Dependent Ultrafast Ultraviolet Energy Dissipation Mechanisms of Plant Sunscreens. Journal of Physical Chemistry Letters, 2019, 10, 5244-5249.	2.1	22
115	Hydroboration Reaction and Mechanism of Carboxylic Acids using NaNH ₂ (BH ₃) ₂ , a Hydroboration Reagent with Reducing Capability between NaBH ₄ and LiAlH ₄ . Journal of Organic Chemistry, 2021, 86, 5305-5316.	1.7	22
116	A DFT study on the reaction mechanisms of ketene–ketone [2+2+2] cycloaddition to form 3-aryglutaric anhydrides under a Lewis acid catalysis: What is the role of BF3?. Journal of Molecular Catalysis A, 2010, 326, 41-47.	4.8	21
117	A DFT study on the reaction mechanism of dimerization of methyl methacrylate catalyzed by N-heterocyclic carbene. Physical Chemistry Chemical Physics, 2014, 16, 20001-20008.	1.3	21
118	Regioselective Synthesis of Sulfonyl-Containing Benzyl Dithiocarbamates through Copper-Catalyzed Thiosulfonylation of Styrenes. Journal of Organic Chemistry, 2019, 84, 11135-11149.	1.7	21
119	Theoretical Study on the Reaction Mechanism between 6-Benzyl-6-azabicyclo[2.2.1]hept-2-ene and Benzoyl Isocyanate to Urea and Isourea. Journal of Physical Chemistry A, 2010, 114, 2913-2919.	1.1	20
120	Theoretical investigations toward TMEDA-catalyzed [2 + 4] annulation of allenoate with 1-aza-1,3-diene: mechanism, regioselectivity, and role of the catalyst. RSC Advances, 2016, 6, 70723-70731.	1.7	20
121	Unique structural micro-adjustments in a new benzothiadiazole-derived Zn(<scp>ii</scp>) metal organic framework via simple photochemical decarboxylation. Chemical Communications, 2017, 53, 10314-10317.	2.2	20
122	Unravelling a general mechanism of converting ionic B/N complexes into neutral B/N analogues of alkanes: H ^{δ+} â‹H ^{δ–} dihydrogen bonding assisted dehydrogenation. Chemical Communications, 2019, 55, 12239-12242.	2.2	20
123	Unravelling the Mechanism and Selectivity of the NHCâ€catalyzed Threeâ€Membered Ringâ€Opening/Fluorination of Epoxy Enals: A DFT Study. ChemCatChem, 2019, 11, 2919-2925.	1.8	20
124	Insights into Nâ€Heterocyclic Carbene (NHC)â€Catalyzed Asymmetric Addition of 2Hâ€Azirine with Aldehyde. Chemistry - an Asian Journal, 2019, 14, 2000-2007.	1.7	20
125	Binuclear Tridentate Hemilabile Copper(I) Catalysts for Utilization of CO ₂ into Oxazolidinones from Propargylic Amines. Journal of Organic Chemistry, 2020, 85, 15197-15212.	1.7	20
126	Copper(<scp>i</scp>)/Ganphos catalysis: enantioselective synthesis of diverse spirooxindoles using iminoesters and alkyl substituted methyleneindolinones. Organic and Biomolecular Chemistry, 2020, 18, 3740-3746.	1.5	20

#	Article	IF	CITATIONS
127	Insights into the chiral sulfide/selenide-catalyzed electrophilic carbothiolation of alkynes: mechanism and origin of axial chirality. Organic Chemistry Frontiers, 2021, 8, 1983-1990.	2.3	20
128	A combined experimental and DFT study of active structures and self-cycle mechanisms of mononuclear tungsten peroxo complexes in oxidation reactions. Journal of Molecular Structure, 2011, 992, 19-26.	1.8	19
129	Direct diphosphonylation of quinolines with H-phosphonates under metal-free conditions. Tetrahedron, 2015, 71, 6087-6093.	1.0	19
130	Insights into the Competing Mechanisms and Origin of Enantioselectivity for N-Heterocyclic Carbene-Catalyzed Reaction of Aldehyde with Enamide. Scientific Reports, 2016, 6, 38200.	1.6	19
131	A DFT Study on Mechanisms and Origin of Selectivity of Phosphine-Catalyzed Vicinal Acylcyanation of Alkynoates. ChemistrySelect, 2017, 2, 5266-5273.	0.7	19
132	Schiff-based Pd(II)/Fe(III) bimetallic self-assembly monolayerpreparation, structure, catalytic dynamic and synergistic. Molecular Catalysis, 2019, 469, 75-86.	1.0	19
133	Doped Zeroâ€Dimensional Cesium Zinc Halides for Highâ€Efficiency Blue Light Emission. Angewandte Chemie, 2020, 132, 21598-21602.	1.6	19
134	Theoretical model for N-heterocyclic carbene-catalyzed decarboxylation reactions. Organic Chemistry Frontiers, 2021, 8, 3268-3273.	2.3	19
135	Over 14% Efficiency Singleâ€Junction Organic Solar Cells Enabled by Reasonable Conformation Modulating in Naphtho[2,3â€b:6,7â€b′]difuran Based Polymer. Advanced Energy Materials, 2021, 11, 200395	4. ^{10.2}	19
136	A theoretical investigation of the enantioselective reduction of prochiral ketones promoted by chiral diamines. Tetrahedron: Asymmetry, 2008, 19, 779-787.	1.8	18
137	A DFT study on the competing mechanisms of PPh3-catalyzed [3+3] and [3+2] annulations between 5-acetoxypenta-2,3-dienoate and 1C,3O-bisnucleophiles. Journal of Molecular Catalysis A, 2015, 407, 137-146.	4.8	18
138	Theoretical investigation toward organophosphineâ€catalyzed [3 + 3] annulation of Morita–Baylis–Hillman carbonates with azomethine imines: Mechanism, origin of stereoselectivity, and role of catalyst. International Journal of Quantum Chemistry, 2017, 117, e25367.	1.0	18
139	Efficient blue electroluminescence of iridium(III) complexes with oxadiazol-substituted amide ancillary ligands. Dyes and Pigments, 2017, 145, 116-125.	2.0	18
140	Rational Design of Cobalt Complexes Based on the <i>trans</i> Effect of Hybrid Ligands and Evaluation of their Catalytic Activity in the Cycloaddition of Carbon Dioxide with Epoxide. Organometallics, 2020, 39, 3546-3561.	1.1	18
141	Organocatalytic insertion into C–B bonds by <i>in situ</i> generated carbene: mechanism, role of the catalyst, and origin of stereoselectivity. Catalysis Science and Technology, 2022, 12, 947-953.	2.1	18
142	Fluorination-triggered tandem cyclization of styrene-type carboxylic acids to access 3-aryl isocoumarin derivatives under microwave irradiation. Organic and Biomolecular Chemistry, 2019, 17, 5038-5046.	1.5	17
143	Controllable syntheses of B/N anionic aminoborane chain complexes by the reaction of NH ₃ BH ₃ with NaH and the mechanistic study. Dalton Transactions, 2019, 48, 14984-14988.	1.6	17
144	Cleavage of the Inert C(sp ²)–Ar σ-Bond of Alkenes by a Spatial Constrained Interaction with Phosphinidene. Journal of the American Chemical Society, 2020, 142, 20973-20978.	6.6	17

#	Article	IF	CITATIONS
145	Cu(OTf) ₂ -Catalyzed Intramolecular Radical Cascade Reactions for the Diversity-Oriented Synthesis of Quinoline-Annulated Polyheterocyclic Frameworks. Organic Letters, 2021, 23, 1445-1450.	2.4	17
146	On the mechanism of homogeneous Pt-catalysis: A theoretical view. Coordination Chemistry Reviews, 2021, 437, 213863.	9.5	17
147	Solution-processed organic light-emitting diodes based on yellow-emitting cationic iridium(III) complexes bearing cyclometalated carbene ligands. Dyes and Pigments, 2016, 134, 465-471.	2.0	16
148	Theoretical investigations towards the [4+2] cycloaddition of ketenes with 1-azadienes catalyzed by N -heterocyclic carbenes: mechanism and stereoselectivity. Tetrahedron, 2016, 72, 5295-5300.	1.0	16
149	Theoretical Study on DBU-Catalyzed Insertion of Isatins into Aryl Difluoronitromethyl Ketones: A Case for Predicting Chemoselectivity Using Electrophilic Parr Function. ACS Omega, 2017, 2, 7029-7038.	1.6	16
150	The conformational behavior of multivalent tris(imidazolium)cyclophanes in the hybrids with metal (pseudo)halides or polyoxometalates. CrystEngComm, 2018, 20, 7184-7194.	1.3	16
151	Investigation on Electron Distribution and Synergetic to Enhance Catalytic Activity in Bimetallic Ni(II)/Pd(II) Molecular Monolayer. ChemCatChem, 2018, 10, 5141-5153.	1.8	16
152	A combined experimental and computational study of NHC-promoted desulfonylation of tosylated aldimines. Organic Chemistry Frontiers, 2020, 7, 578-583.	2.3	16
153	A theoretical review for novel Lewis base amine/imine-catalyzed reactions. Organic and Biomolecular Chemistry, 2020, 18, 6781-6800.	1.5	16
154	Theoretical study of the NHC-catalyzed C–S bond cleavage and reconstruction reaction: mechanism, stereoselectivity, and role of catalysts. Organic Chemistry Frontiers, 2021, 8, 5352-5360.	2.3	16
155	Fragmentation of deprotonated cyclic dipeptides by electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2009, 44, 1188-1194.	0.7	15
156	A DFT study on the mechanisms of tungsten-catalyzed Baeyer–Villiger reaction using hydrogen peroxide as oxidant. Computational and Theoretical Chemistry, 2011, 966, 207-212.	1.1	15
157	Syntheses, structures of <i>N</i> â€(substituted)â€2â€azaâ€[3]â€ferrocenophanes and their application as redox sensor for Cu ²⁺ ion. Applied Organometallic Chemistry, 2012, 26, 449-454.	1.7	15
158	Mechanistic and stereoselectivity study for the reaction of trifluoropyruvates with arylpropenes catalyzed by a cationic Lewis acid rhodium complex. RSC Advances, 2015, 5, 100147-100158.	1.7	15
159	Blocking Intramolecular Cycloadditions between C≡C Triple Bonds and Electrophilic Phosphinidene Complexes: Generation of Intermediates Able To React with Arenes. Organometallics, 2016, 35, 3440-3443.	1.1	15
160	A theoretical and mass spectrometry study of the novel mechanism of N-glycosidic bond cleavage in nucleoside. International Journal of Mass Spectrometry, 2009, 282, 1-5.	0.7	13
161	Synthesis, characterization, photo- and electro-luminescent properties of blue cationic iridium complexes with nonconjugated bis(pyrazole-1-yl)methane as the ancillary ligand. Dyes and Pigments, 2016, 134, 19-26.	2.0	13
162	Hexameric Silver(I) Pyrazolate: Synthesis, Structure, and Isomerization. Inorganic Chemistry, 2017, 56, 11310-11316.	1.9	13

#	Article	IF	CITATIONS
163	NHC-catalyzed β-specific addition of N-based nucleophiles to allenoates. Organic Chemistry Frontiers, 2020, 7, 1593-1599.	2.3	13
164	Insights into Lewis base-catalyzed chemoselective [3 + 2] and [3 + 4] annulation reactions of MBH carbonates. Organic Chemistry Frontiers, 2020, 7, 1828-1836.	2.3	13
165	A safe and efficient synthetic method for alkali metal octahydrotriborates, unravelling a general mechanism for constructing the delta B3 unit of polyhedral boranes. Dalton Transactions, 2021, 50, 13676-13679.	1.6	13
166	Influence of 2,2-bithiophene and thieno[3,2-b] thiophene units on the photovoltaic performance of benzodithiophene-based wide-bandgap polymers. Journal of Materials Chemistry C, 2017, 5, 4471-4479.	2.7	12
167	A DFT Study of N-Heterocyclic Carbene Catalyzed [4+2] Annulation between Saturated Carboxylate with <i>ortho</i> -Quinone Methide: Possible Mechanisms and Origin of Enantioselectivity. ChemistrySelect, 2017, 2, 8856-8864.	0.7	12
168	Theoretical study on DABCO-catalyzed ring expansion of cyclopropyl ketone: Mechanism, chemoselectivity, and role of catalyst. Computational and Theoretical Chemistry, 2018, 1123, 20-25.	1.1	12
169	Hybrid Supramolecules for Azolium-Linked Cyclophane Immobilization and Conformation Study: Synthesis, Characterization, and Photocatalytic Degradation. ACS Omega, 2019, 4, 5137-5146.	1.6	12
170	An approach to 7-aza-1-phosphanorbornane complexes: strain promoted rearrangement of 1-iminylphosphirane complexes and cycloaddition with olefins. Dalton Transactions, 2019, 48, 5523-5526.	1.6	12
171	Desymmetrization of N-Cbz glutarimides through N-heterocyclic carbene organocatalysis. Nature Communications, 2022, 13, .	5.8	12
172	Fragmentation pathways of eight nitrogen-containing bisphosphonates (BPs) investigated by ESI-MSn in negative ion mode. International Journal of Mass Spectrometry, 2010, 295, 85-93.	0.7	11
173	A computational study on the reaction mechanisms of N-formylation of amines under a Lewis acid catalysis. Computational and Theoretical Chemistry, 2010, 951, 89-92.	1.5	11
174	Direct esterification of p-nitrobenzoic acid with n-butanol using diethyl chlorophosphate in pyridine: A DFT study. Computational and Theoretical Chemistry, 2011, 963, 13-17.	1.1	11
175	Insights into chemoselective fluorination reaction of alkynals via N-heterocyclic carbene and BrA,nsted base cooperative catalysis. Theoretical Chemistry Accounts, 2017, 136, 1.	0.5	11
176	Hetero-bichromophore Dyad as a Highly Efficient Triplet Acceptor for Polarity Tuned Triplet–Triplet Annihilation Upconversion. Journal of Physical Chemistry Letters, 2019, 10, 4368-4373.	2.1	11
177	A universal approach for optimizing charge extraction in electron transporting layer-free organic solar cells <i>via</i> Lewis base doping. Journal of Materials Chemistry A, 2019, 7, 25808-25817.	5.2	11
178	A systematic investigation of structural transformation in a copper pyrazolato system: a case study. Dalton Transactions, 2020, 49, 1116-1123.	1.6	11
179	Mechanistic investigation of N-heterocyclic carbene and Na2CO3 cooperatively catalyzed C(sp3)-F bond activation reaction of fluoroenal. Molecular Catalysis, 2020, 489, 110944.	1.0	11
180	Adducts of triangular silver(<scp>i</scp>) 3,5-bis(trifluoromethyl)pyrazolate with thiophene derivatives: a weak interaction model of desulfurization. Dalton Transactions, 2019, 48, 16162-16166.	1.6	11

#	Article	IF	CITATIONS
181	The mechanism and origin of selectivities for NHC-catalyzed synthesis of axially chiral benzothiophene/benzofuran-fused biaryls. Organic and Biomolecular Chemistry, 2022, 20, 1662-1670.	1.5	11
182	Mechanism of a cobalt-catalyzed hydroarylation reaction and origin of stereoselectivity. Catalysis Science and Technology, 2022, 12, 4380-4387.	2.1	11
183	Insight into the multicomponent reaction mechanisms of prop-2-en-1-amine and ethyl propiolate with alloxan derivative: A density functional theory study. Chemical Physics Letters, 2010, 495, 33-39.	1.2	10
184	A DFT study on the reaction mechanisms of phosphonation of heteroaryl N-oxides with H-phosphonates. Computational and Theoretical Chemistry, 2015, 1071, 33-38.	1.1	10
185	Synthesis, photophysical and electroluminescent properties of blue-emitting dual core imidazole–anthracene/pyrene derivatives. RSC Advances, 2016, 6, 60264-60270.	1.7	10
186	Unravelling the Origins of Hydroboration Chemoselectivity Inversion Using an N,O-Chelated Ir(I) Complex: A Computational Study. Journal of Organic Chemistry, 2019, 84, 6709-6718.	1.7	10
187	Utilizing the aggregation-induced emission phenomenon to visualize spontaneous molecular directed motion in the solid state. Materials Chemistry Frontiers, 2019, 3, 2746-2750.	3.2	10
188	Possible Mechanisms and Origin of Selectivities for Phosphine atalyzed [2+n] (n=3, 4) Annulations of Saturated Amines and l´â€Acetoxy Allenoates. Asian Journal of Organic Chemistry, 2021, 10, 619-625.	1.3	10
189	Hetero-Diels–Alder reactions of 2H-phospholes with allenes: synthesis and functionalization of 6-methylene-1-phosphanorbornenes. Organic Chemistry Frontiers, 2021, 8, 3740-3745.	2.3	10
190	Insights into Organoamine-Catalyzed Asymmetric Synthesis of Axially Chiral Allenoates Using Morita–Baylis–Hillman Carbonates and Trisubstituted Allenoates: Mechanism and Origin of Stereoselectivity. Journal of Organic Chemistry, 2021, 86, 15276-15283.	1.7	10
191	Solution-processed organic light-emitting diodes based on a blue-emitting cationic iridium(III) complex using 2-(1H-pyrazol-1-yl)pyridine as ancillary ligand. Inorganica Chimica Acta, 2016, 453, 115-121.	1.2	9
192	Synergistic Effects of Fluorination and Alkylthiolation on the Photovoltaic Performance of the Poly(benzodithiophene-benzothiadiazole) Copolymers. ACS Applied Energy Materials, 2018, 1, 4686-4694.	2.5	9
193	Controlled distribution of active centre to enhance catalytic activity of ordered Pd/Co catalytic nano-monolayer. Journal of Catalysis, 2019, 376, 228-237.	3.1	9
194	Transitionâ€Metalâ€Like Reversible Cycloadditions of [t BuSPâ€W(CO) 5] with Alkenes and Alkynes. Chemistry - A European Journal, 2019, 25, 15036-15039.	1.7	9
195	Understanding the <i>Z</i> selectivity of the metal-free intermolecular aminoarylation of alkynes: a DFT study. Organic Chemistry Frontiers, 2019, 6, 125-133.	2.3	9
196	Access to polyfunctionalized carbazoles through ï€-extension of 2-methyl-3-oxoacetate indoles. Organic Chemistry Frontiers, 2019, 6, 3741-3745.	2.3	9
197	The chemistry of phosphirane-substituted phosphinidene complexes. Chemical Communications, 2020, 56, 9707-9710.	2.2	9
198	Gasâ€phase pyrolysis mechanisms of 3â€anilinoâ€1â€propanol: Density functional theory study. International Journal of Quantum Chemistry, 2009, 109, 1036-1044.	1.0	8

#	Article	IF	CITATIONS
199	Insights into Ag(<scp>i</scp>)-catalyzed addition reactions of amino alcohols to electron-deficient olefins: competing mechanisms, role of catalyst, and origin of chemoselectivity. RSC Advances, 2018, 8, 40338-40346.	1.7	8
200	Origin and stabilization of axial chirality in the construction of naphthyl-C2-indoles: a DFT study. Organic Chemistry Frontiers, 2020, 7, 3166-3173.	2.3	8
201	Insights into isothiourea-catalyzed asymmetric [3 + 3] annulation of α,β-unsaturated aryl esters with 2-acylbenzazoles: mechanism, origin of stereoselectivity and switchable chemoselectivity. Catalysis Science and Technology, 2020, 10, 3664-3669.	2.1	8
202	Organic solar cells based on chlorine functionalized benzo[1,2-b:4,5-b′]difuran-benzo[1,2-c:4,5-c′]dithiophene-4,8-dione copolymer with efficiency exceeding 13%. Science China Chemistry, 2020, 63, 483-489.	4.2	8
203	Synthesis of Benzodiazepines Through Ring Opening/Ring Closure of Benzimidazole Salts. Chemistry - A European Journal, 2020, 26, 3252-3258.	1.7	8
204	Desymmetrization of Cyclic 1,3-Diketones under <i>N</i> -Heterocyclic Carbene Organocatalysis: Access to Organofluorines with Multiple Stereogenic Centers. Research, 2021, 2021, 9867915.	2.8	8
205	Electrostatic effects in N-heterocyclic carbene catalysis: revealing the nature of catalysed decarboxylation. Physical Chemistry Chemical Physics, 2021, 23, 24627-24633.	1.3	8
206	A combined experimental and computational study of NHC-catalyzed allylation of allenoate with MBH esters: new regiospecific and stereoselective access to 1,5-enyne. Organic Chemistry Frontiers, 0, , .	2.3	8
207	Unraveling the mechanism and substituent effects on the N-heterocyclic carbene-catalyzed transformation reaction of enals and imines. Molecular Catalysis, 2022, 519, 112122.	1.0	8
208	Molecular dynamics simulations on inclusion complexes for chiral enantiomers with heterocyclic cyclodecapeptide. Computational and Theoretical Chemistry, 2014, 1027, 46-52.	1.1	7
209	Unexpected Odd–Even Oscillation in the Enhanced Chemical Activities of the Ru _{<i>n</i>} (<i>n</i> = 2–14) Nanoclusters for H ₂ O Splitting. Journal of Physical Chemistry C, 2017, 121, 7188-7198.	1.5	7
210	Benzothiadiazole Versus Thiophene: Influence of the Auxiliary Acceptor on the Photovoltaic Properties of Donor–Acceptorâ€Based Copolymers. Macromolecular Rapid Communications, 2018, 39, 1700547.	2.0	7
211	A Computational Study on the 4â€Dimethylaminopyridine (DMAP)â€Catalyzed Regioselective [2+4] Cyclization of Allenic Ester with Cyclic Ketimine. ChemistrySelect, 2018, 3, 10553-10558.	0.7	7
212	A density functional theory study on mechanism and substituent effects of a baseâ€free and catalystâ€free synthesis of functionalized dihydrobenzoxazoles. International Journal of Quantum Chemistry, 2019, 119, e25836.	1.0	7
213	Terpyridine-based Pd(<scp>ii</scp>)/Ni(<scp>ii</scp>) organometallic framework nano-sheets supported on graphene oxide—investigating the fabrication, tuning of catalytic properties and synergetic effects. RSC Advances, 2020, 10, 23080-23090.	1.7	7
214	Exploring the fluorination effect on photophysical and photovoltaic properties of Benzo[1,2-c:4,5-c′]dithiophene-4,8-dione copolymers. Dyes and Pigments, 2021, 187, 109109.	2.0	7
215	NHC-Catalyzed Transformation Reactions of Imines: Electrophilic versus Nucleophilic Attack. Journal of Organic Chemistry, 2022, 87, 7989-7994.	1.7	7
216	Self-Assembly, Crystal Structure and Thermal Property of a Coordination Polymer [(DDTD)(Cu3I5)]n. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2009, 39, 441-444.	0.6	6

#	Article	IF	CITATIONS
217	A DFT study on the mechanisms of three-component reaction between imidazoles, isocyanates and cyanophenylacetylene. Computational and Theoretical Chemistry, 2013, 1017, 168-173.	1.1	6
218	Insight into Isothiourea atalyzed Enantioselective Addition of Saturated Esters to Iminium Ions. Chemistry - an Asian Journal, 2019, 14, 4322-4327.	1.7	6
219	Sandwich structured aryl-diimine Pd (II)/Co (II) monolayer—Fabrication, catalytic performance, synergistic effect and mechanism investigation. Molecular Catalysis, 2021, 501, 111359.	1.0	6
220	Anderson-type polyoxometalate as excellent catalyst for green synthesis of adipic acid with hydrogen peroxide. Molecular Catalysis, 2021, 510, 111705.	1.0	6
221	Direct Conversion of Benzothiadiazole to Benzimidazole: New Benzimidazoleâ€Derived Metal–Organic Frameworks with Adjustable Honeycombâ€Like Cavities. Chemistry - A European Journal, 2019, 25, 5246-5250.	1.7	6
222	The chiral pyridoxal-catalyzed biomimetic Mannich reaction: the mechanism and origin of stereoselectivity. Organic Chemistry Frontiers, 0, , .	2.3	6
223	A DFT study on the thermal reaction mechanisms of fluorobutanesulfonyl azide with pyrazine under solvent free condition. Computational and Theoretical Chemistry, 2011, 968, 39-43.	1.1	5
224	Mechanistic insights into the stereoselective C2-functionalization of 1-substituted imidazoles with cyanophenylacetylene and aldehydes. Computational and Theoretical Chemistry, 2014, 1049, 35-41.	1.1	5
225	DFT studies on inclusion complexes of 1-phenyl-1-propanol enantiomers with modified cyclic decapeptides. Structural Chemistry, 2014, 25, 699-705.	1.0	5
226	Mechanism and Substituent Effects of Benzene Arylation via a Phenyl Cation Strategy: A Density Functional Theory Study. ChemCatChem, 2019, 11, 5068-5076.	1.8	5
227	Synthesis, photophysical and electroluminescent properties of iridium(<scp>iii</scp>) complexes with 2-aryl-thiazole and oxadiazol-substituted amide derivative ligands. New Journal of Chemistry, 2019, 43, 4272-4281.	1.4	5
228	Computational Study on N-Heterocyclic Carbene (NHC)-Catalyzed Intramolecular Hydroacylation-Stetter Reaction Cascade. Molecular Catalysis, 2020, 484, 110723.	1.0	5
229	Nâ€Heterocyclic Carbene atalyzed Asymmetric Câ^'O Bond Construction Between Benzoic Acid and <i>o</i> â€Phthalaldehyde: Mechanism and Origin of Stereoselectivity. Chemistry - an Asian Journal, 2021, 16, 2346-2350.	1.7	5
230	Dearomatization [4+2] Cycloaddition of Nonactivated Benzene Derivatives. Organic Letters, 2022, 24, 4404-4408.	2.4	5
231	Electrospray ionization multistage tandem mass spectrometry of penta- and hexa-substituted aryloxycyclotriphosphazenes. International Journal of Mass Spectrometry, 2009, 288, 51-57.	0.7	4
232	The coordination chemistry of phosphinidene sulfides. Synthesis and catalytic properties of Pd ₄ and Pt ₄ clusters. Dalton Transactions, 2018, 47, 13342-13344.	1.6	4
233	Thermal Stability of Ag ₁₃ [–] Clusters Studied by Ab Initio Molecular Dynamics Simulations. Journal of Physical Chemistry A, 2020, 124, 4325-4332.	1.1	4
234	Synthesis, crystal structure and photophysical properties of deep-blue emitting cationic iridium(III) complexes with 2ʹ,6ʹ-diï¬,uoro-2,3ʹ-bipyridine cyclometalated ligand and pyrazole-type ancillary ligands. Journal of Luminescence, 2021, 233, 117880.	1.5	4

#	Article	IF	CITATIONS
235	Cofactor-free ActVA-Orf6 monooxygenase catalysis <i>via</i> proton-coupled electron transfer: a QM/MM study. Organic and Biomolecular Chemistry, 2022, 20, 5525-5534.	1.5	4
236	A DFT study on the reaction mechanisms of isocyanide-based multicomponent synthesis of polysubstituted cyclopentenes. Computational and Theoretical Chemistry, 2013, 1018, 85-90.	1.1	3
237	Theoretical study on binding models of copper nucleases containing pyridyl groups to DNA. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	3
238	Theoretical study of binding affinity for diamidine with DNA. Structural Chemistry, 2016, 27, 681-696.	1.0	3
239	A density functional theory study on mechanisms of [4 + 2] annulation of enal with αâ€methylene cycloalkanone catalyzed by Nâ€heterocyclic carbene. International Journal of Quantum Chemistry, 2019, 119, e26039.	1.0	3
240	Direct intramolecular C(sp3)–H bond sulfonamidation to synthesize benzosultam derivatives under metal-free conditions. Organic Chemistry Frontiers, 0, , .	2.3	3
241	A DFT study of the enantioselective reduction of oxime ethers promoted by chiral spiroborate esters. International Journal of Quantum Chemistry, 2012, 112, 1449-1459.	1.0	2
242	A density functional theory study on lewis acid atalyzed transesterification of βâ€oxodithioesters. International Journal of Quantum Chemistry, 2014, 114, 862-868.	1.0	2
243	Influence of 4-cyanopyridinium multicationic isomers on the structure–property relationships of two-dimensional hybrid as photocatalyst for the degradation of organic dyes. Inorganic Chemistry Communication, 2020, 119, 108126.	1.8	2
244	Is the reaction sequence in phosphine-catalyzed [8+2] cycloaddition controlled by electrophilicity?. Chemical Communications, 2021, 57, 761-764.	2.2	2
245	Efficient carbon-based CsPbI ₂ Br perovskite solar cells using bifunctional polymer modification. Sustainable Energy and Fuels, 2021, 5, 3867-3875.	2.5	2
246	Estimate Depth Information from Monocular Infrared Images Based on Deep Learning. , 2020, , .		2
247	Synthesis and photophysical properties of novel phthalocyanine–perylenediimide–phthalocyanine triad and phthalocyanine–perylenediimide dyads. RSC Advances, 2014, 4, 25616-25624.	1.7	1
248	Hybrid supramolecule for azolium-linked cyclophane immobilization and conformation study: Synthesis, characterization and thermostability. Main Group Chemistry, 2019, 18, 459-466.	0.4	1
249	Origin of stereoselectivity in an isothiourea catalyzed Michael addition reaction of aryl ester with vinyl disulfone. New Journal of Chemistry, 2020, 44, 17906-17911.	1.4	1
250	Origin of diastereoselectivity and catalytic efficiency on Isothiourea-mediated cyclization of carboxylic acid with alkenyl ketone. Computational and Theoretical Chemistry, 2020, 1190, 113004.	1.1	1
251	Hydrogen Evolution Reaction: Coupling of Ru and Oâ€Vacancy on 2D Moâ€Based Electrocatalyst Via a Solidâ€Phase Interface Reaction Strategy for Hydrogen Evolution Reaction (Adv. Energy Mater. 26/2021). Advanced Energy Materials, 2021, 11, 2170102.	10.2	1
252	Transformation of 1,1′-biphosphirane-M(CO)5 (MÂ=ÂMo, Cr, W) complexes: Possible mechanisms and reactivity of active intermediates. Computational and Theoretical Chemistry, 2021, 1204, 113420.	1.1	1

#	Article	IF	CITATIONS
253	Arithmetic Computation Using Self-Assembly of DNA Tiles: Subtraction in the Method of Complements. Journal of Computational and Theoretical Nanoscience, 2013, 10, 306-312.	0.4	Ο
254	Mechanisms of the Reactions of B‣ubstituted Amine Boranes with THF·BH ₃ . European Journal of Inorganic Chemistry, 2019, 2019, 4994-4999.	1.0	0
255	Fascinating Supramolecular Assembly through Noncovalent Interactions Involving Anions in Organic Ionic Crystals. Journal of Physical Chemistry C, 2021, 125, 22346-22353.	1.5	Ο
256	DNA Self-Assembly for Maximum Weighted Independent Set Problem. Advanced Science Letters, 2012, 17, 21-26.	0.2	0
257	Insight into fragmentation of a phosphirane to form phosphinidene complexes: an illustration with the 1-phenylselenylphosphirane W(CO) ₅ complex. Dalton Transactions, 2022, 51, 3046-3050.	1.6	0