Atsuya Takeda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8531358/publications.pdf

Version: 2024-02-01

185998 143772 3,674 61 28 57 citations h-index g-index papers 62 62 62 3250 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Hypofractionated Stereotactic Radiotherapy (HypoFXSRT) for Stage I Non-small Cell Lung Cancer: Updated Results of 257 Patients in a Japanese Multi-institutional Study. Journal of Thoracic Oncology, 2007, 2, S94-S100.	0.5	882
2	Stereotactic Body Radiotherapy (SBRT) for Operable Stage I Nonâ€"Small-Cell Lung Cancer: Can SBRT Be Comparable to Surgery?. International Journal of Radiation Oncology Biology Physics, 2011, 81, 1352-1358.	0.4	561
3	Stereotactic body radiotherapy for small hepatocellular carcinoma: A retrospective outcome analysis in 185 patients. Acta Oncol \tilde{A}^3 gica, 2014 , 53 , $399-404$.	0.8	222
4	Phase 2 study of stereotactic body radiotherapy and optional transarterial chemoembolization for solitary hepatocellular carcinoma not amenable to resection and radiofrequency ablation. Cancer, 2016, 122, 2041-2049.	2.0	160
5	Stereotactic body radiotherapy (SBRT) for oligometastatic lung tumors from colorectal cancer and other primary cancers in comparison with primary lung cancer. Radiotherapy and Oncology, 2011, 101, 255-259.	0.3	142
6	Radiotherapy for Hepatocellular Carcinoma Results in Comparable Survival to Radiofrequency Ablation: A Propensity Score Analysis. Hepatology, 2019, 69, 2533-2545.	3.6	115
7	Stereotactic Body Radiotherapy for Primary Lung Cancer at a Dose of 50 Gy Total in Five Fractions to the Periphery of the Planning Target Volume Calculated Using a Superposition Algorithm. International Journal of Radiation Oncology Biology Physics, 2009, 73, 442-448.	0.4	110
8	The maximum standardized uptake value (SUVmax) on FDG-PET is a strong predictor of local recurrence for localized non-small-cell lung cancer after stereotactic body radiotherapy (SBRT). Radiotherapy and Oncology, 2011, 101, 291-297.	0.3	93
9	Severe COPD Is Correlated With Mild Radiation Pneumonitis Following Stereotactic Body Radiotherapy. Chest, 2012, 141, 858-866.	0.4	74
10	Stereotactic ablative body radiotherapy for previously untreated solitary hepatocellular carcinoma. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 372-379.	1.4	74
11	Acceptable Toxicity After Stereotactic Body Radiation Therapy for Liver Tumors Adjacent to the Central Biliary System. International Journal of Radiation Oncology Biology Physics, 2013, 85, 1006-1011.	0.4	70
12	Role of stereotactic body radiation therapy for hepatocellular carcinoma. World Journal of Gastroenterology, 2014, 20, 3100.	1.4	69
13	Stereotactic Ablative Body Radiation Therapy for Octogenarians With Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2013, 86, 257-263.	0.4	66
14	Threshold Doses for Focal Liver Reaction After Stereotactic Ablative Body Radiation Therapy for Small Hepatocellular Carcinoma Depend on Liver Function: Evaluation onÂMagnetic Resonance Imaging With Gd-EOB-DTPA. International Journal of Radiation Oncology Biology Physics, 2014, 88, 306-311.	0.4	64
15	Evaluation for local failure by 18F-FDG PET/CT in comparison with CT findings after stereotactic body radiotherapy (SBRT) for localized non-small-cell lung cancer. Lung Cancer, 2013, 79, 248-253.	0.9	62
16	Hypofractionated stereotactic radiotherapy with and without transarterial chemoembolization for small hepatocellular carcinoma not eligible for other ablation therapies: Preliminary results for efficacy and toxicity. Hepatology Research, 2008, 38, 60-69.	1.8	59
17	Acute exacerbation of subclinical idiopathic pulmonary fibrosis triggered by hypofractionated stereotactic body radiotherapy in a patient with primary lung cancer and slightly focal honeycombing. Radiation Medicine, 2008, 26, 504-507.	0.8	58
18	Dose Distribution Analysis in Stereotactic Body Radiotherapy Using Dynamic Conformal Multiple Arc Therapy. International Journal of Radiation Oncology Biology Physics, 2009, 74, 363-369.	0.4	56

#	Article	IF	CITATIONS
19	Early Graphical Appearance of Radiation Pneumonitis Correlates With the Severity of Radiation Pneumonitis After Stereotactic Body Radiotherapy (SBRT) in Patients With Lung Tumors. International Journal of Radiation Oncology Biology Physics, 2010, 77, 685-690.	0.4	53
20	Role of stereotactic body radiotherapy for oligometastasis from colorectal cancer. World Journal of Gastroenterology, 2014, 20, 4220.	1.4	53
21	Toxicities of Organs at Risk in the Mediastinal and Hilar Regions Following Stereotactic Body Radiotherapy for Centrally Located Lung Tumors. Journal of Thoracic Oncology, 2014, 9, 1370-1376.	0.5	50
22	Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based segmentation of normal lungs excluding the trachea and main bronchi. Journal of Radiation Research, 2020, 61, 257-264.	0.8	49
23	Acute Exacerbation of Usual Interstitial Pneumonia After Resection of Lung Cancer. Annals of Thoracic Surgery, 2012, 93, 937-943.	0.7	48
24	Small Lung Tumors: Long-Scan-Time CT for Planning of Hypofractionated Stereotactic Radiation Therapy—Initial Findings. Radiology, 2005, 237, 295-300.	3.6	43
25	Reassessment of Declines in Pulmonary Function ≥ 1 Year After Stereotactic Body Radiotherapy. Chest, 2013, 143, 130-137.	0.4	42
26	Multicenter prospective study of stereotactic body radiotherapy for previously untreated solitary primary hepatocellular carcinoma: The STRSPH study. Hepatology Research, 2021, 51, 461-471.	1.8	40
27	Stereotactic body radiotherapy for patients with oligometastases from colorectal cancer: risk-adapted dose prescription with a maximum dose of 83–100 Gy in five fractions. Journal of Radiation Research, 2016, 57, 400-405.	0.8	37
28	Tumor Response on CT Following Hypofractionated Stereotactic Ablative Body Radiotherapy for Small Hypervascular Hepatocellular Carcinoma With Cirrhosis. American Journal of Roentgenology, 2013, 201, W812-W820.	1.0	36
29	Analysis of suitable prescribed isodose line fitting to planning target volume in stereotactic body radiotherapy using dynamic conformal multiple arc therapy. Practical Radiation Oncology, 2012, 2, 46-53.	1.1	27
30	Stereotactic body radiotherapy for operable early-stage non-small cell lung cancer. Lung Cancer, 2017, 109, 62-67.	0.9	26
31	Stereotactic Body Radiation Therapy With a High Maximum Dose Improves Local Control, Cancer-Specific Death, and Overall Survival in Peripheral Early-Stage Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2021, 111, 143-151.	0.4	25
32	A Multi-Institutional Retrospective Study of Repeated Stereotactic Body Radiation Therapy for Intrahepatic Recurrent Hepatocellular Carcinoma. International Journal of Radiation Oncology Biology Physics, 2020, 108, 1265-1275.	0.4	22
33	Simple low-cost approaches to semantic segmentation in radiation therapy planning for prostate cancer using deep learning with non-contrast planning CT images. Physica Medica, 2020, 78, 93-100.	0.4	17
34	Subclinical interstitial lung disease: Is it a risk factor for fatal radiation pneumonitis following stereotactic body radiotherapy?. Lung Cancer, 2014, 83, 112.	0.9	15
35	Feasibility study of stereotactic body radiotherapy for peripheral lung tumors with a maximum dose of 100 Gy in five fractions and a heterogeneous dose distribution in the planning target volume. Journal of Radiation Research, 2014, 55, 988-995.	0.8	13
36	Stereotactic body radiotherapy for lung cancer patients with idiopathic interstitial pneumonias. Radiotherapy and Oncology, 2017, 125, 310-316.	0.3	13

#	Article	IF	CITATIONS
37	Comparison of stereotactic body radiotherapy and radiofrequency ablation for hepatocellular carcinoma: Systematic review and metaâ€analysis of propensity score studies. Hepatology Research, 2021, 51, 813-822.	1.8	13
38	Stereotactic body radiotherapy for T3 and T4NOMO non–small cell lung cancer. Journal of Radiation Research, 2016, 57, 265-272.	0.8	12
39	Effects of sample size and data augmentation on U-Net-based automatic segmentation of various organs. Radiological Physics and Technology, 2021, 14, 318-327.	1.0	12
40	Stereotactic body radiotherapy for chronic obstructive pulmonary disease patients undergoing or eligible for long-term domiciliary oxygen therapy. Journal of Radiation Research, 2016, 57, 62-67.	0.8	10
41	Local control by salvage stereotactic body radiotherapy for recurrent/residual hepatocellular carcinoma after other local therapies. Acta Oncol \tilde{A}^3 gica, 2020, 59, 888-894.	0.8	10
42	Are Head-to-Head Comparisons Between Radiofrequency Ablation and Stereotactic Body Radiotherapy Really Necessary for Localized Hepatocellular Carcinoma?. Journal of Clinical Oncology, 2018, 36, 2563-2564.	0.8	9
43	Stereotactic ablative body radiation therapy with dynamic conformal multiple arc therapy for liver tumors: Optimal isodose line fitting to the planning target volume. Practical Radiation Oncology, 2014, 4, e7-e13.	1.1	7
44	Stereotactic body radiotherapy for patients with non-small-cell lung cancer using RapidArc delivery and a steep dose gradient: prescription of 60% isodose line of maximum dose fitting to the planning target volume. Journal of Radiation Research, 2019, 60, 364-370.	0.8	7
45	Hypofractionated radiotherapy for hepatocellular carcinomas adjacent to the gastrointestinal tract. Hepatology Research, 2021, 51, 294-302.	1.8	7
46	Stereotactic body radiotherapy for primary non-small cell lung cancer patients with clinical T3-4NOMO (UICC 8th edition): outcomes and patterns of failure. Journal of Radiation Research, 2019, 60, 639-649.	0.8	6
47	Pleural contact decreases survival in clinical T1NOMO lung cancer patients undergoing SBRT. Radiotherapy and Oncology, 2019, 134, 191-198.	0.3	5
48	Use of Contrast-Enhanced Ultrasound with Sonazoid for Evaluating the Radiotherapy Efficacy for Hepatocellular Carcinoma. Diagnostics, 2021, 11, 486.	1.3	5
49	Clinical impact of radiofrequency ablation and stereotactic body radiation therapy for colorectal liver metastasis as local therapies for elderly, vulnerable patients. JGH Open, 2020, 4, 722-728.	0.7	4
50	Development and validation of a prognostic model for non-lung cancer death in elderly patients treated with stereotactic body radiotherapy for non-small cell lung cancer. Journal of Radiation Research, 2021, , .	0.8	4
51	Feasibility of marker-less stereotactic body radiotherapy for hepatocellular carcinoma. Acta Oncol $ ilde{A}^3$ gica, 2022, 61, 104-110.	0.8	4
52	Impact of Local Recurrence on Cause-Specific Death After Stereotactic Body Radiotherapy for Early-Stage Non-Small Cell Lung Cancer: Dynamic Prediction Using Landmark Model. International Journal of Radiation Oncology Biology Physics, 2022, 112, 1135-1143.	0.4	3
53	CT Findings and Treatment Outcomes of Ground-Glass Opacity Predominant Lung Cancer After Stereotactic Body Radiotherapy. Clinical Lung Cancer, 2022, 23, 428-437.	1.1	3
54	Safety and efficacy study: Short-term application of radiofrequency ablation and stereotactic body radiotherapy for Barcelona Clinical Liver Cancer stage 0–B1 hepatocellular carcinoma. PLoS ONE, 2021, 16, e0245076.	1.1	2

Atsuya Takeda

#	Article	IF	CITATIONS
55	Optimal application of stereotactic body radiotherapy and radiofrequency ablation treatment for different multifocal hepatocellular carcinoma lesions in patients with Barcelona Clinic Liver Cancer stage A4â \in "B1: a pilot study. BMC Cancer, 2021, 21, 1169.	1.1	2
56	Pathological Appearance of Focal Liver Reactions after Radiotherapy for Hepatocellular Carcinoma. Diagnostics, 2022, 12, 1072.	1.3	2
57	Methodological concerns for investigating the effects of mid-treatment break of stereotactic body radiotherapy (SBRT) for hepatocellular carcinoma (HCC). Radiotherapy and Oncology, 2020, 147, 234.	0.3	1
58	Multiple myeloma relapse in the irradiated liver: involvement of hepatocyte growth factor akin to that after hepatocyte transplantation. Journal of Radiotherapy in Practice, 2012, 11, 271-273.	0.2	0
59	Three Cases of Hepatocellular Carcinoma With Massive Macrovascular Invasion Successfully Treated With Radiotherapy. Cureus, 2021, 13, e18624.	0.2	0
60	In Regard to Chang et al. International Journal of Radiation Oncology Biology Physics, 2022, 112, 574.	0.4	0
61	Applying Artificial Neural Networks to Develop a Decision Support Tool for Tis–4N0M0 Non–Small-Cell Lung Cancer Treated With Stereotactic Body Radiotherapy. JCO Clinical Cancer Informatics, 2022, , .	1.0	0