Sayeepriyadarshini Anakk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8531185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single-Cell Analysis of the Liver Epithelium Reveals Dynamic Heterogeneity and an Essential Role for YAP in Homeostasis and Regeneration. Cell Stem Cell, 2019, 25, 23-38.e8.	5.2	176
2	Bile Acids Activate YAP to Promote Liver Carcinogenesis. Cell Reports, 2013, 5, 1060-1069.	2.9	159
3	Combined deletion of Fxr and Shp in mice induces Cyp17a1 and results in juvenile onset cholestasis. Journal of Clinical Investigation, 2011, 121, 86-95.	3.9	100
4	Bile acid excess induces cardiomyopathy and metabolic dysfunctions in the heart. Hepatology, 2017, 65, 189-201.	3.6	88
5	Brain Trauma Leads to Enhanced Lung Inflammation and Injury: Evidence for Role of P4504Fs in Resolution. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 963-974.	2.4	87
6	ESRP2 controls an adult splicing programme in hepatocytes to support postnatal liver maturation. Nature Communications, 2015, 6, 8768.	5.8	83
7	Hepatic FXR/SHP axis modulates systemic glucose and fatty acid homeostasis in aged mice. Hepatology, 2017, 66, 498-509.	3.6	81
8	Vitamin D Receptor Activation Down-regulates the Small Heterodimer Partner and Increases CYP7A1 to Lower Cholesterol. Gastroenterology, 2014, 146, 1048-1059.e7.	0.6	69
9	Alternative splicing rewires Hippo signaling pathway in hepatocytes to promote liver regeneration. Nature Structural and Molecular Biology, 2018, 25, 928-939.	3.6	58
10	Dissociation of diabetes and obesity in mice lacking orphan nuclear receptor small heterodimer partner. Journal of Lipid Research, 2011, 52, 2234-2244.	2.0	44
11	Cysteine sulfinic acid decarboxylase regulation: A role for farnesoid <scp>X</scp> receptor and small heterodimer partner in murine hepatic taurine metabolism. Hepatology Research, 2014, 44, E218-28.	1.8	41
12	Small heterodimer partner deletion prevents hepatic steatosis and when combined with farnesoid X receptor loss protects against type 2 diabetes in mice. Hepatology, 2017, 66, 1854-1865.	3.6	34
13	Catalytic characterization and cytokine mediated regulation of cytochrome P450 4Fs in rat hepatocytes. Archives of Biochemistry and Biophysics, 2007, 461, 104-112.	1.4	27
14	Gender Dictates the Nuclear Receptor-Mediated Regulation of CYP3A44. Drug Metabolism and Disposition, 2007, 35, 36-42.	1.7	26
15	Constitutive Androstane Receptor Differentially Regulates Bile Acid Homeostasis in Mouse Models of Intrahepatic Cholestasis. Hepatology Communications, 2019, 3, 147-159.	2.0	15
16	Bile acid treatment and FXR agonism lower postprandial lipemia in mice. American Journal of Physiology - Renal Physiology, 2020, 318, G682-G693.	1.6	15
17	Enterohepatic and non-canonical roles of farnesoid X receptor in controlling lipid and glucose metabolism. Molecular and Cellular Endocrinology, 2022, 549, 111616.	1.6	13
18	Xenobiotic Nuclear Receptor Signaling Determines Molecular Pathogenesis of Progressive Familial Intrahepatic Cholestasis. Endocrinology, 2018, 159, 2435-2446.	1.4	10

SAYEEPRIYADARSHINI ANAKK

#	Article	IF	CITATIONS
19	Scaffolding Protein IQGAP1 Is Dispensable, but Its Overexpression Promotes Hepatocellular Carcinoma via YAP1 Signaling. Molecular and Cellular Biology, 2021, 41, .	1.1	10
20	Small Heterodimer Partner Regulates Dichotomous T Cell Expansion by Macrophages. Endocrinology, 2019, 160, 1573-1589.	1.4	8
21	Deletion of Intestinal SHP Impairs Short-term Response to Cholic Acid Challenge in Male Mice. Endocrinology, 2021, 162, .	1.4	8
22	ldentification of IQ motif–containing GTPase-activating protein 1 as a regulator of long-term ketosis. JCI Insight, 2018, 3, .	2.3	8
23	Transcriptomic analysis across liver diseases reveals disease-modulating activation of constitutive androstane receptor in cholestasis. JHEP Reports, 2020, 2, 100140.	2.6	6
24	Nuclear receptors FXR and SHP regulate protein N-glycan modifications in the liver. Science Advances, 2021, 7, .	4.7	6
25	Jekyll and Hyde: nuclear receptors ignite and extinguish hepatic oxidative milieu. Trends in Endocrinology and Metabolism, 2021, 32, 790-802.	3.1	4
26	Loss of Hepatic Small Heterodimer Partner Elevates Ileal Bile Acids and Alters Cell Cycle-related Genes in Male Mice. Endocrinology, 2022, 163, .	1.4	4
27	Sex differences feed into nuclear receptor signaling along the digestive tract. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166211.	1.8	3
28	Fxr-alpha Skips Alternatively in Liver Metabolism. Gastroenterology, 2020, 159, 1655-1657.	0.6	2
29	Melancholé: The Dark Side of Bile Acids and Its Cellular Consequences. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1474-1476.	2.3	2
30	FXR Regulates Adipose Tissue Remodeling during Obesity. FASEB Journal, 2021, 35, .	0.2	1
31	Investigating the Intestineâ€Specific Role of Small Heterodimer Partner. FASEB Journal, 2020, 34, 1-1.	0.2	1
32	829 Cysteine Sulfinic Acid Decarboxylase Regulation by Bile Acids: A Role for FXR and SHP in Hepatic Taurine Metabolism. Gastroenterology, 2012, 142, S-930.	0.6	0
33	372 Bile Acids Induce Myocardial Dysfunction: Candidate Mechanism for Cirrhotic Cardiomyopathy. Gastroenterology, 2013, 144, S-944.	0.6	Ο
34	SUN-024 Uncovering a Novel Role for Nuclear Receptor Fxr and Shp in Regulating N-Linked Glycosylation. Journal of the Endocrine Society, 2019, 3, .	0.1	0
35	Bile Acid Excess Impairs Thermogenic Function in Brown Adipose Tissue. FASEB Journal, 2019, 33, lb302.	0.2	0
36	Uncovering Sexâ€specific Roles of Farnesoid X Receptor in Heme Metabolism and Liver Proliferation. FASEB Journal, 2020, 34, 1-1.	0.2	0

3

#	Article	IF	CITATIONS
37	Scaffolding Protein IQ Motif Containing GTPase Activating Protein 2 Regulates Liver Metabolic Homeostasis. FASEB Journal, 2020, 34, 1-1.	0.2	0
38	FXR regulates metabolic function of fat depots during obesity. FASEB Journal, 2020, 34, 1-1.	0.2	0
39	Rebuttal to: The Benevolent Bile: Bile Acids as Stimulants of Liver Regeneration. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 1481-1482.	2.3	0