## Robert A Blanchette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8531166/publications.pdf Version: 2024-02-01

|          |                | 34076        | 30058          |
|----------|----------------|--------------|----------------|
| 204      | 12,366         | 52           | 103            |
| papers   | citations      | h-index      | g-index        |
|          |                |              |                |
|          |                |              |                |
|          |                |              |                |
| 211      | 211            | 211          | 9123           |
| all docs | docs citations | times ranked | citing authors |
|          |                |              |                |

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Conservation of Severely Deteriorated, Dry Painted Wood: A Case Study From Abydos, Egypt. Journal of the American Institute for Conservation, 2022, 61, 254-274.                                            | 0.2 | 2         |
| 2  | Blue stain fungi infecting an 84â€millionâ€yearâ€old conifer from South Africa. New Phytologist, 2022, 233,<br>1032-1037.                                                                                   | 3.5 | 3         |
| 3  | New Findings on the Biology and Ecology of the Ecuadorian Amazon Fungus Polyporus leprieurii var.<br>yasuniensis. Journal of Fungi (Basel, Switzerland), 2022, 8, 203.                                      | 1.5 | 3         |
| 4  | Grapevine trunk diseases of cold-hardy varieties grown in Northern Midwest vineyards coincide with canker fungi and winter injury. PLoS ONE, 2022, 17, e0269555.                                            | 1.1 | 9         |
| 5  | Variation in xylem characteristics of botanical races of Persea americana and their potential influence on susceptibility to the pathogen Raffaelea lauricola. Tropical Plant Pathology, 2021, 46, 232-239. | 0.8 | 5         |
| 6  | Detecting Heterobasidion irregulare in Minnesota and Assessment of Indigenous Fungi on Pines.<br>Forests, 2021, 12, 57.                                                                                     | 0.9 | 5         |
| 7  | Fungi attacking historic wood of Fort Conger and the Peary Huts in the High Arctic. PLoS ONE, 2021, 16, e0246049.                                                                                           | 1.1 | 17        |
| 8  | Fungal mycelial mats used as textile by indigenous people of North America. Mycologia, 2021, 113, 261-267.                                                                                                  | 0.8 | 7         |
| 9  | Fungi associated with galleries of the emerald ash borer. Fungal Biology, 2021, 125, 551-559.                                                                                                               | 1.1 | 7         |
| 10 | Taxonomy of the major rhizomorphic species of the "Melanopus group―within Polyporaceae in YasunÃ-<br>National Park, Ecuador. PLoS ONE, 2021, 16, e0254567.                                                  | 1.1 | 5         |
| 11 | Fungi from Galleries of the Emerald Ash Borer Produce Cankers in Ash Trees. Forests, 2021, 12, 1509.                                                                                                        | 0.9 | 4         |
| 12 | RNA-editing in Basidiomycota, revisited. ISME Communications, 2021, 1, .                                                                                                                                    | 1.7 | 2         |
| 13 | Fungal Diversity in Multiple Post-harvest Aged Red Pine Stumps and Their Potential Influence on<br>Heterobasidion Root Rot in Managed Stands Across Minnesota. Frontiers in Fungal Biology, 2021, 2, .      | 0.9 | 2         |
| 14 | Fungal attack on archaeological wooden artefacts in the Arctic—implications in a changing climate.<br>Scientific Reports, 2020, 10, 14577.                                                                  | 1.6 | 17        |
| 15 | Diverse subterranean fungi of an underground iron ore mine. PLoS ONE, 2020, 15, e0234208.                                                                                                                   | 1.1 | 16        |
| 16 | Using Wood Rot Phenotypes to Illuminate the "Gray―Among Decomposer Fungi. Frontiers in<br>Microbiology, 2020, 11, 1288.                                                                                     | 1.5 | 33        |
| 17 | Fungal symbionts of bark and ambrosia beetles can suppress decomposition of pine sapwood by competing with wood-decay fungi. Fungal Ecology, 2020, 45, 100926.                                              | 0.7 | 15        |
| 18 | Antifungal Norditerpene Oidiolactones from the Fungus <i>Oidiodendron truncatum</i> , a Potential<br>Biocontrol Agent for White-Nose Syndrome in Bats. Journal of Natural Products, 2020, 83, 344-353.      | 1.5 | 11        |

| #  | Article                                                                                                                                                                                   | IF        | CITATIONS      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|
| 19 | Xylem characteristics in <i>Ulmus americana</i> cultivars and their potential use as a preliminary screening method for Dutch elm disease resistance. Forest Pathology, 2020, 50, e12638. | 0.5       | 5              |
| 20 | Chaetomium as Potential Soft Rot Degrader of Woody and Papery Cultural Heritage. Fungal Biology, 2020, , 395-419.                                                                         | 0.3       | 1              |
| 21 | Cultural characterization and chlamydospore function of the Ganodermataceae present in the eastern United States. Mycologia, 2019, 111, 1-12.                                             | 0.8       | 10             |
| 22 | Assessment of biodegradation in ancient archaeological wood from the Middle Cemetery at Abydos,<br>Egypt. PLoS ONE, 2019, 14, e0213753.                                                   | 1.1       | 19             |
| 23 | Pathogenicity of <i>Ganoderma</i> Species on Landscape Trees in the Southeastern United States.<br>Plant Disease, 2018, 102, 1944-1949.                                                   | 0.7       | 10             |
| 24 | Elucidating wood decomposition by four species of Ganoderma from the United States. Fungal<br>Biology, 2018, 122, 254-263.                                                                | 1.1       | 24             |
| 25 | Cadopherone and colomitide polyketides from Cadophora wood-rot fungi associated with historic expedition huts in Antarctica. Phytochemistry, 2018, 148, 1-10.                             | 1.4       | 33             |
| 26 | New record of Chaetomium grande Asgari & Zare (Chaetomiaceae) for the Egyptian and African<br>mycobiota. Phytotaxa, 2018, 343, 283.                                                       | 0.1       | 7              |
| 27 | Occurrence of European Tar Spot ( <i>Rhytisma acerinum</i> ) on Norway Maple ( <i>Acer) Tj ETQq1 1 0.784314</i>                                                                           | rgBT_/Ove | rloçk 10 Tf 50 |
| 28 | Defence responses in the xylem ofUlmus americanacultivars after inoculation withOphiostoma<br>novoâ€ulmi. Forest Pathology, 2018, 48, e12453.                                             | 0.5       | 10             |
| 29 | Identifying the "Mushroom of Immortality― Assessing the Ganoderma Species Composition in<br>Commercial Reishi Products. Frontiers in Microbiology, 2018, 9, 1557.                         | 1.5       | 35             |
| 30 | Elucidating "lucidum": Distinguishing the diverse laccate Ganoderma species of the United States. PLoS<br>ONE, 2018, 13, e0199738.                                                        | 1.1       | 42             |
| 31 | Substrate-Specific Differential Gene Expression and RNA Editing in the Brown Rot Fungus Fomitopsis<br>pinicola. Applied and Environmental Microbiology, 2018, 84, .                       | 1.4       | 22             |
| 32 | The gilled mushroom Amanita spissacea (Amanitaceae): a new report for India. Journal of Threatened<br>Taxa, 2018, 10, 12413-12417.                                                        | 0.1       | 3              |
| 33 | Deception Island, Antarctica, harbors a diverse assemblage of wood decay fungi. Fungal Biology, 2017,<br>121, 145-157.                                                                    | 1.1       | 40             |
| 34 | Draft genome sequence of a monokaryotic model brown-rot fungus Postia (Rhodonia) placenta SB12.<br>Genomics Data, 2017, 14, 21-23.                                                        | 1.3       | 19             |
| 35 | American elm cultivars: Variation in compartmentalization of infection by <i>Ophiostoma<br/>novoâ€ulmi</i> and its effects on hydraulic conductivity. Forest Pathology, 2017, 47, e12369. | 0.5       | 15             |
| 36 | Fungal Planet description sheets: 558–624. Persoonia: Molecular Phylogeny and Evolution of Fungi,<br>2017, 38, 240-384.                                                                   | 1.6       | 126            |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Resource capture and competitive ability of non-pathogenic Pseudogymnoascus spp. and P. destructans, the cause of white-nose syndrome in bats. PLoS ONE, 2017, 12, e0178968.                                   | 1.1 | 19        |
| 38 | Unexpected Metabolic Versatility in a Combined Fungal Fomannoxin/Vibralactone Biosynthesis.<br>Journal of Natural Products, 2016, 79, 1407-1414.                                                               | 1.5 | 22        |
| 39 | Transcriptome and Secretome Analyses of the Wood Decay Fungus Wolfiporia cocos Support<br>Alternative Mechanisms of Lignocellulose Conversion. Applied and Environmental Microbiology, 2016,<br>82, 3979-3987. | 1.4 | 44        |
| 40 | Fungal Planet description sheets: 400–468. Persoonia: Molecular Phylogeny and Evolution of Fungi,<br>2016, 36, 316-458.                                                                                        | 1.6 | 193       |
| 41 | Characterization of archaeological waterlogged wooden objects exposed on the hyper-saline Dead<br>Sea shore. Journal of Archaeological Science: Reports, 2016, 9, 73-86.                                       | 0.2 | 10        |
| 42 | Arctic driftwood reveals unexpectedly rich fungal diversity. Fungal Ecology, 2016, 23, 58-65.                                                                                                                  | 0.7 | 43        |
| 43 | Climate, decay, and the death of the coal forests. Current Biology, 2016, 26, R563-R567.                                                                                                                       | 1.8 | 25        |
| 44 | Fungal Planet description sheets: 371–399. Persoonia: Molecular Phylogeny and Evolution of Fungi,<br>2015, 35, 264-327.                                                                                        | 1.6 | 133       |
| 45 | Soudanones A–G: Antifungal Isochromanones from the Ascomycetous Fungus <i>Cadophora</i> sp.<br>Isolated from an Iron Mine. Journal of Natural Products, 2015, 78, 1456-1460.                                   | 1.5 | 28        |
| 46 | Evolution of novel wood decay mechanisms in Agaricales revealed by the genome sequences of<br>Fistulina hepatica and Cylindrobasidium torrendii. Fungal Genetics and Biology, 2015, 76, 78-92.                 | 0.9 | 141       |
| 47 | <i>Aurantioporthe corni</i> gen. et comb. nov., an endophyte and pathogen of <i>Cornus<br/>alternifolia</i> . Mycologia, 2015, 107, 66-79.                                                                     | 0.8 | 17        |
| 48 | Cryptococcus vaughanmartiniae sp. nov. and Cryptococcus onofrii sp. nov.: two new species isolated from worldwide cold environments. Extremophiles, 2015, 19, 149-159.                                         | 0.9 | 23        |
| 49 | First Report of <i>Heterobasidion irregulare</i> Causing Root Rot and Mortality of Red Pines in<br>Minnesota. Plant Disease, 2015, 99, 1038-1038.                                                              | 0.7 | 8         |
| 50 | Influence of Populus Genotype on Gene Expression by the Wood Decay Fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 2014, 80, 5828-5835.                                            | 1.4 | 28        |
| 51 | Fungal Diversity in Antarctic Soils. , 2014, , 35-53.                                                                                                                                                          |     | 43        |
| 52 | Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its<br>Pioneer Colonization Strategies of Wood. PLoS Genetics, 2014, 10, e1004759.                              | 1.5 | 90        |
| 53 | Fungal Planet description sheets: 281–319. Persoonia: Molecular Phylogeny and Evolution of Fungi,<br>2014, 33, 212-289.                                                                                        | 1.6 | 143       |
| 54 | Oxidative enzymatic response of white-rot fungi to single-walled carbon nanotubes. Environmental<br>Pollution, 2014, 193, 197-204.                                                                             | 3.7 | 42        |

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Injury-Induced Biosynthesis of Methyl-Branched Polyene Pigments in a White-Rotting Basidiomycete.<br>Journal of Natural Products, 2014, 77, 2658-2663.                                                                                                       | 1.5 | 16        |
| 56 | Investigations of Biodeterioration by Fungi in Historic Wooden Churches of Chiloé, Chile. Microbial<br>Ecology, 2014, 67, 568-575.                                                                                                                           | 1.4 | 22        |
| 57 | Three new genera of fungi from extremely acidic soils. Mycological Progress, 2014, 13, 819.                                                                                                                                                                  | 0.5 | 15        |
| 58 | Distinguishing wild from cultivated agarwood ( <i>Aquilaria</i> spp.) using direct analysis in real time<br>and time ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2014, 28, 281-289.                                             | 0.7 | 71        |
| 59 | Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot<br>paradigm for wood decay fungi. Proceedings of the National Academy of Sciences of the United States<br>of America, 2014, 111, 9923-9928.                   | 3.3 | 595       |
| 60 | Deterioration, decay and identification of fungi isolated from wooden structures at the<br>Humberstone and Santa Laura saltpeter works: AÂworld heritage site in Chile. International<br>Biodeterioration and Biodegradation, 2014, 86, 309-316.             | 1.9 | 30        |
| 61 | Tracing the origin of Arctic driftwood. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 68-76.                                                                                                                                                 | 1.3 | 37        |
| 62 | Colocalizing incipient reactions in wood degraded by the brown rot fungus Postia placenta.<br>International Biodeterioration and Biodegradation, 2013, 83, 56-62.                                                                                            | 1.9 | 20        |
| 63 | Species of Mycosphaerellaceae and Teratosphaeriaceae on native Myrtaceae in Uruguay: evidence of fungal host jumps. Fungal Biology, 2013, 117, 94-102.                                                                                                       | 1.1 | 17        |
| 64 | White rot Basidiomycetes isolated from Chiloé National Park in Los Lagos region, Chile. Antonie Van<br>Leeuwenhoek, 2013, 104, 1193-1203.                                                                                                                    | 0.7 | 6         |
| 65 | Histological and anatomical responses in avocado, <i>Persea americana</i> , induced by the vascular wilt pathogen, <i>Raffaelea lauricola</i> . Botany, 2012, 90, 627-635.                                                                                   | 0.5 | 57        |
| 66 | Comparative genomics of <i>Ceriporiopsis subvermispora</i> and <i>Phanerochaete<br/>chrysosporium</i> provide insight into selective ligninolysis. Proceedings of the National Academy of<br>Sciences of the United States of America, 2012, 109, 5458-5463. | 3.3 | 259       |
| 67 | The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes.<br>Science, 2012, 336, 1715-1719.                                                                                                                               | 6.0 | 1,424     |
| 68 | Lignocellulose modifications by brown rot fungi and their effects, as pretreatments, on cellulolysis.<br>Bioresource Technology, 2012, 116, 147-154.                                                                                                         | 4.8 | 67        |
| 69 | Distribution and abundance of soil fungi in Antarctica at sites on the Peninsula, Ross Sea Region and<br>McMurdo Dry Valleys. Soil Biology and Biochemistry, 2011, 43, 308-315.                                                                              | 4.2 | 132       |
| 70 | Introduced and indigenous fungi of the Ross Island historic huts and pristine areas of Antarctica.<br>Polar Biology, 2011, 34, 1669-1677.                                                                                                                    | 0.5 | 34        |
| 71 | Fungal colonization of exotic substrates in Antarctica. Fungal Diversity, 2011, 49, 13-22.                                                                                                                                                                   | 4.7 | 43        |
| 72 | Puccinia psidii infecting cultivated Eucalyptus and native myrtaceae in Uruguay. Mycological<br>Progress, 2011, 10, 273-282.                                                                                                                                 | 0.5 | 26        |

| #  | Article                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Significant Alteration of Gene Expression in Wood Decay Fungi Postia placenta and Phanerochaete chrysosporium by Plant Species. Applied and Environmental Microbiology, 2011, 77, 4499-4507.                                                                              | 1.4 | 106       |
| 74 | An Antarctic Hot Spot for Fungi at Shackleton's Historic Hut on Cape Royds. Microbial Ecology, 2010,<br>60, 29-38.                                                                                                                                                        | 1.4 | 87        |
| 75 | Endophytic and canker-associated Botryosphaeriaceae occurring on non-native Eucalyptus and native<br>Myrtaceae trees in Uruguay. Fungal Diversity, 2010, 41, 53-69.                                                                                                       | 4.7 | 89        |
| 76 | Comparative Transcriptome and Secretome Analysis of Wood Decay Fungi <i>Postia placenta</i> and <i>Phanerochaete chrysosporium</i> . Applied and Environmental Microbiology, 2010, 76, 3599-3610.                                                                         | 1.4 | 237       |
| 77 | Monitoring and identification of airborne fungi at historic locations on Ross Island, Antarctica.<br>Polar Science, 2010, 4, 275-283.                                                                                                                                     | 0.5 | 25        |
| 78 | Preservation of fungi in archaeological charcoal. Journal of Archaeological Science, 2010, 37, 2106-2116.                                                                                                                                                                 | 1.2 | 116       |
| 79 | Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic<br>PeninsulaThis article is one of a selection of papers in the Special Issue on Polar and Alpine<br>Microbiology Canadian Journal of Microbiology, 2009, 55, 46-56. | 0.8 | 47        |
| 80 | A further note on a sealer's sledge, discovered on Livingston Island, South Shetland Islands. Polar<br>Record, 2009, 45, 275-275.                                                                                                                                         | 0.4 | 4         |
| 81 | Fungal diversity and deterioration in mummified woods from the ad Astra Ice Cap region in the Canadian High Arctic. Polar Biology, 2009, 32, 751-758.                                                                                                                     | 0.5 | 24        |
| 82 | <i>Neofusicoccum eucalyptorum</i> , a <i>Eucalyptus</i> pathogen, on native Myrtaceae in Uruguay.<br>Plant Pathology, 2009, 58, 964-970.                                                                                                                                  | 1.2 | 19        |
| 83 | Histopathology of primary needles and mortality associated with white pine blister rust in resistant and susceptible <i>Pinus strobus</i> . Forest Pathology, 2009, 39, 361-376.                                                                                          | 0.5 | 8         |
| 84 | Mycosphaerellaceae and Teratosphaeriaceae associated with <i>Eucalyptus</i> leaf diseases and stem cankers in Uruguay. Forest Pathology, 2009, 39, 349-360.                                                                                                               | 0.5 | 25        |
| 85 | White-Rot Basidiomycete-Mediated Decomposition of C <sub>60</sub> Fullerol. Environmental Science<br>& Technology, 2009, 43, 3162-3168.                                                                                                                                   | 4.6 | 89        |
| 86 | Discovery of the eucalypt pathogenQuambalaria eucalyptiinfecting a non-Eucalyptushost in Uruguay.<br>Australasian Plant Pathology, 2008, 37, 600.                                                                                                                         | 0.5 | 15        |
| 87 | Protection of spruce from colonization by the bark beetle, Ips perturbatus, in Alaska. Forest Ecology<br>and Management, 2008, 256, 1825-1839.                                                                                                                            | 1.4 | 39        |
| 88 | Screening fungi isolated from historic <i>Discovery</i> Hut on Ross Island, Antarctica for cellulose<br>degradation. Antarctic Science, 2008, 20, 463-470.                                                                                                                | 0.5 | 36        |
| 89 | Host Range Investigations of New, Undescribed, and Common Phytophthora spp. Isolated from<br>Ornamental Nurseries in Minnesota. Plant Disease, 2008, 92, 642-647.                                                                                                         | 0.7 | 8         |
| 90 | Black Currant Clonal Identity and White Pine Blister Rust Resistance. Hortscience: A Publication of<br>the American Society for Hortcultural Science, 2008, 43, 200-202.                                                                                                  | 0.5 | 3         |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Microbes Can Damage but Also Help Restore Artifacts. Microbe Magazine, 2008, 3, 563-567.                                                                                                                                                  | 0.4 | 2         |
| 92  | Phytophthora Species Associated with Diseased Woody Ornamentals in Minnesota Nurseries. Plant Disease, 2007, 91, 97-102.                                                                                                                  | 0.7 | 75        |
| 93  | Proteomic Comparison of Needles from Blister Rust-Resistant and Susceptible Pinus strobus Seedlings<br>Reveals UpRegulation of Putative Disease Resistance Proteins. Molecular Plant-Microbe Interactions,<br>2006, 19, 150-160.          | 1.4 | 33        |
| 94  | Epicuticular Wax and White Pine Blister Rust Resistance in Resistant and Susceptible Selections of Eastern White Pine (Pinus strobus). Phytopathology, 2006, 96, 171-177.                                                                 | 1.1 | 29        |
| 95  | Endoglucanase-producing fungi isolated from Cape Evans historic expedition hut on Ross Island,<br>Antarctica. Environmental Microbiology, 2006, 8, 1212-1219.                                                                             | 1.8 | 57        |
| 96  | Assessment of fungal diversity and deterioration in a wooden structure at New Harbor, Antarctica.<br>Polar Biology, 2006, 29, 526-531.                                                                                                    | 0.5 | 30        |
| 97  | Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biology and Biochemistry, 2006, 38, 3057-3064.                                                                                                   | 4.2 | 189       |
| 98  | Structure, Organization, and Transcriptional Regulation of a Family of Copper Radical Oxidase Genes<br>in the Lignin-Degrading Basidiomycete Phanerochaete chrysosporium. Applied and Environmental<br>Microbiology, 2006, 72, 4871-4877. | 1.4 | 77        |
| 99  | First Report of Dieback and Leaf Lesions on Rhododendron sp. Caused by Phytophthora hedraiandra in<br>the United States. Plant Disease, 2006, 90, 109-109.                                                                                | 0.7 | 15        |
| 100 | Survey of potential sapstain fungi onPinus radiatain New Zealand. New Zealand Journal of Botany,<br>2005, 43, 653-663.                                                                                                                    | 0.8 | 35        |
| 101 | Environmental factors influencing microbial growth inside the historic expedition huts of Ross<br>Island, Antarctica. International Biodeterioration and Biodegradation, 2005, 55, 45-53.                                                 | 1.9 | 43        |
| 102 | Armillaria species on small woody plants, small woody debris, and root fragments in red pine stands.<br>Canadian Journal of Forest Research, 2005, 35, 1487-1495.                                                                         | 0.8 | 14        |
| 103 | Wood-Destroying Soft Rot Fungi in the Historic Expedition Huts of Antarctica. Applied and Environmental Microbiology, 2004, 70, 1328-1335.                                                                                                | 1.4 | 117       |
| 104 | Environmental pollutants from the Scott and Shackleton expeditions during the â€~Heroic Age' of<br>Antarctic exploration. Polar Record, 2004, 40, 143-151.                                                                                | 0.4 | 24        |
| 105 | Wood deterioration in Chacoan great houses of the southwestern United States. Conservation and Management of Archaeological Sites, 2004, 6, 203-212.                                                                                      | 0.9 | 16        |
| 106 | Molecular and morphological characterization of the willow rust fungus, <i>Melampsora<br/>epitea,</i> from arctic and temperate hosts in North America. Mycologia, 2004, 96, 1330-1338.                                                   | 0.8 | 33        |
| 107 | Albino Strains of Ophiostoma Species for Biological Control of Sapstaining Fungi. Holzforschung, 2003, 57, 237-242.                                                                                                                       | 0.9 | 31        |
| 108 | Histology of White Pine Blister Rust in Needles of Resistant and Susceptible Eastern White Pine. Plant<br>Disease, 2003, 87, 1026-1030.                                                                                                   | 0.7 | 18        |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Defibration of wood in the expedition huts of Antarctica: an unusual deterioration process occurring in the polar environment. Polar Record, 2002, 38, 313-322.                                           | 0.4 | 34        |
| 110 | Etiology of Bronze Leaf Disease of Populus. Plant Disease, 2002, 86, 462-469.                                                                                                                             | 0.7 | 7         |
| 111 | The current use of Phellinus igniarius by the Eskimos of Western Alaska. The Mycologist, 2002, 16, .                                                                                                      | 0.5 | 13        |
| 112 | Differentiating Aspen and Cottonwood in Prehistoric Wood from Chacoan Great House Ruins.<br>Journal of Archaeological Science, 2002, 29, 521-527.                                                         | 1.2 | 8         |
| 113 | Etiology of Red Stain in Boxelder. Plant Health Progress, 2002, 3, .                                                                                                                                      | 0.8 | 3         |
| 114 | Fungus ashes and tobacco: the use of Phellinus igniarius by the indigenous people of North America.<br>The Mycologist, 2001, 15, 4-9.                                                                     | 0.5 | 8         |
| 115 | Alvar and Butvar: The Use of Polyvinyl Acetal Resins for the Treatment of the Wooden Artifacts from Gordion, Turkey. Journal of the American Institute for Conservation, 2001, 40, 43-57.                 | 0.2 | 11        |
| 116 | Nitrogen cycling by wood decomposing soft-rot fungi in the "King Midas tomb," Gordion, Turkey.<br>Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13346-13350. | 3.3 | 43        |
| 117 | Biological Control of Blue Stain in Pulpwood: Mechanisms of Control used by Phlebiopsis gigantea.<br>Holzforschung, 2001, 55, 238-245.                                                                    | 0.9 | 6         |
| 118 | A review of microbial deterioration found in archaeological wood from different environments.<br>International Biodeterioration and Biodegradation, 2000, 46, 189-204.                                    | 1.9 | 369       |
| 119 | Bacterial Biodegradation of Extractives and Patterns of Bordered Pit Membrane Attack in Pine Wood.<br>Applied and Environmental Microbiology, 2000, 66, 5201-5205.                                        | 1.4 | 38        |
| 120 | Biological Control of Blue Stain Fungi onPopulus tremuloidesUsing SelectedOphiostomalsolates.<br>Holzforschung, 1998, 52, 234-240.                                                                        | 0.9 | 18        |
| 121 | Haploporus odorus: A Sacred Fungus in Traditional Native American Culture of the Northern Plains.<br>Mycologia, 1997, 89, 233.                                                                            | 0.8 | 13        |
| 122 | The Conservation of a Fossil Tree Trunk. Studies in Conservation, 1997, 42, 74.                                                                                                                           | 0.6 | 2         |
| 123 | The conservation of a fossil tree trunk. Studies in Conservation, 1997, 42, 74-82.                                                                                                                        | 0.6 | 7         |
| 124 | Cell wall alterations in loblolly pine wood decayed by the white-rot fungus, Ceriporiopsis subvermispora. Journal of Biotechnology, 1997, 53, 203-213.                                                    | 1.9 | 162       |
| 125 | Haploporus odorus: A sacred fungus in traditional Native American culture of the northern plains.<br>Mycologia, 1997, 89, 233-240.                                                                        | 0.8 | 15        |
| 126 | Fungal delignification and biomechanical pulping of wood. Advances in Biochemical<br>Engineering/Biotechnology, 1997, , 159-195.                                                                          | 0.6 | 45        |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Biological Processing of Pine Logs for Pulp and Paper Production with Phlebiopsis gigantea. Applied and Environmental Microbiology, 1997, 63, 1995-2000.                                  | 1.4 | 49        |
| 128 | Metal ion adsorption by pseudosclerotial plates ofPhellinus weirii. Mycologia, 1996, 88, 98-103.                                                                                          | 0.8 | 11        |
| 129 | Metal Ion Adsorption by Pseudosclerotial Plates of Phellinus weirii. Mycologia, 1996, 88, 98.                                                                                             | 0.8 | 14        |
| 130 | Melanin and perithecial development inOphiostoma piliferum. Mycologia, 1995, 87, 857-863.                                                                                                 | 0.8 | 45        |
| 131 | Wood degradation by <i>Phellinus noxius</i> : ultrastructure and cytochemistry. Canadian Journal of Microbiology, 1995, 41, 253-265.                                                      | 0.8 | 27        |
| 132 | Chemical Characterization of a Red Pigment (5,8-Dihydroxy-2,7-Dimethoxy-1,4-Naphthalenedione)<br>Produced byArthrographis cuboideain Pink Stained Wood. Holzforschung, 1995, 49, 407-410. | 0.9 | 21        |
| 133 | Soft-Rot Fungal Degradation of Lignin in 2700 Year Old Archaeological Woods. Holzforschung, 1995,<br>49, 1-10.                                                                            | 0.9 | 48        |
| 134 | Melanin and Perithecial Development in Ophiostoma piliferum. Mycologia, 1995, 87, 857.                                                                                                    | 0.8 | 39        |
| 135 | Refiner Mechanical and Biomechanical Pulping of Jute. Holzforschung, 1995, 49, 537-544.                                                                                                   | 0.9 | 34        |
| 136 | Degradation of the lignocellulose complex in wood. Canadian Journal of Botany, 1995, 73, 999-1010.                                                                                        | 1.2 | 231       |
| 137 | Distribution of Armillaria ostoyae genets in a Pinus resinosa – Pinus banksiana forest. Canadian<br>Journal of Botany, 1995, 73, 776-787.                                                 | 1.2 | 46        |
| 138 | An integrated approach, using biological and chemical control, to prevent blue stain in pine logs.<br>Canadian Journal of Botany, 1995, 73, 613-619.                                      | 1.2 | 18        |
| 139 | Biological Control of Blue-Stain Fungi in Wood. Phytopathology, 1995, 85, 92.                                                                                                             | 1.1 | 42        |
| 140 | Mineralization of alachlor by lignin-degrading fungi. Canadian Journal of Microbiology, 1994, 40,<br>795-798.                                                                             | 0.8 | 31        |
| 141 | Assessment of Deterioration in Archaeological Wood from Ancient Egypt. Journal of the American<br>Institute for Conservation, 1994, 33, 55-70.                                            | 0.2 | 40        |
| 142 | Biodegradation of Compression Wood and Tension Wood by White and Brown Rot Fungi.<br>Holzforschung, 1994, 48, 34-42.                                                                      | 0.9 | 53        |
| 143 | Reduction of Resin Content in Wood Chips during Experimental Biological Pulping Processes.<br>Holzforschung, 1994, 48, 285-290.                                                           | 0.9 | 54        |
| 144 | Assessment of Deterioration in Archaeological Wood from Ancient Egypt. Journal of the American<br>Institute for Conservation, 1994, 33, 55.                                               | 0.2 | 17        |

| #   | Article                                                                                                                                                                        | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Cartapipâ,"¢: a biopulping product for control of pitch and resin acid problems in pulp mills. Journal of Biotechnology, 1993, 30, 115-122.                                    | 1.9 | 64        |
| 146 | Fungal degradation of wood lignins: Geochemical perspectives from CuO-derived phenolic dimers and monomers. Geochimica Et Cosmochimica Acta, 1993, 57, 3985-4002.              | 1.6 | 172       |
| 147 | Biomechanical Pulping of Loblolly Pine Chips with Selected White-Rot Fungi. Holzforschung, 1993, 47, 36-40.                                                                    | 0.9 | 89        |
| 148 | Nineteenth Century Shaman Grave Guardians Are Carved Fomitopsis officinalis Sporophores.<br>Mycologia, 1992, 84, 119.                                                          | 0.8 | 10        |
| 149 | Soft Rot and Wood Pseudomorphs in an Ancient Coffin (700 Bc) From Tumulus Mm at Gordion, Turkey.<br>IAWA Journal, 1992, 13, 201-213.                                           | 2.7 | 17        |
| 150 | Evaluating Isolates of <i>Phanerochaete chrysosporium</i> and <i>Ceriporiopsis subvermispora</i> for<br>Use in Biological Pulping Processes. Holzforschung, 1992, 46, 109-116. | 0.9 | 90        |
| 151 | The Use of Green-Stained Wood Caused by the Fungus <i>Chlorociboria</i> in Intarsia Masterpieces from the 15th Century. Holzforschung, 1992, 46, 225-232.                      | 0.9 | 48        |
| 152 | Biosorption of metal ions by <i>Armillaria</i> rhizomorphs. Canadian Journal of Botany, 1992, 70, 1515-1520.                                                                   | 1.2 | 61        |
| 153 | Effect of white rot basidiomycetes on chemical composition and in vitro digestibility of oat straw and alfalfa stems. Journal of Animal Science, 1992, 70, 1928-1935.          | 0.2 | 47        |
| 154 | Nineteenth Century Shaman Grave Guardians are Carved <i>Fomitopsis Officinalis</i> Sporophores.<br>Mycologia, 1992, 84, 119-124.                                               | 0.8 | 25        |
| 155 | Cell wall composition and degradability of forage stems following chemical and biological delignification. Journal of the Science of Food and Agriculture, 1992, 58, 347-355.  | 1.7 | 53        |
| 156 | Immunocytochemistry of Fungal Infection Processes in Trees. Springer Series in Wood Science, 1992, ,<br>424-444.                                                               | 0.8 | 3         |
| 157 | Anatomical Responses of Xylem to Injury and Invasion by Fungi. Springer Series in Wood Science, 1992, ,<br>76-95.                                                              | 0.8 | 35        |
| 158 | Decay of date palm wood by white-rot and brown-rot fungi. Canadian Journal of Botany, 1991, 69,<br>615-629.                                                                    | 1.2 | 43        |
| 159 | Ultrastructural characterization of wood from Tertiary fossil forests in the Canadian Arctic.<br>Canadian Journal of Botany, 1991, 69, 560-568.                                | 1.2 | 32        |
| 160 | An evaluation of different forms of deterioration found in archaeological wood. International Biodeterioration, 1991, 28, 3-22.                                                | 0.2 | 55        |
| 161 | Phellinus ralunensis (aphyllophorales: Hymenochaetaceae), a new white pocket rot species from Chile.<br>Mycological Research, 1991, 95, 769-775.                               | 2.5 | 4         |
| 162 | Delignification by Wood-Decay Fungi. Annual Review of Phytopathology, 1991, 29, 381-403.                                                                                       | 3.5 | 376       |

| #   | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Ultrastructure of Ancient Buried Wood from Japan. Holzforschung, 1991, 45, 161-168.                                                                                                                                                   | 0.9 | 30        |
| 164 | Microbial and Enzymatic Degradation of Wood and Wood Components. Springer Series in Wood<br>Science, 1990, , .                                                                                                                        | 0.8 | 779       |
| 165 | Characterization of Palo Podrido, a Natural Process of Delignification in Wood. Applied and Environmental Microbiology, 1990, 56, 65-74.                                                                                              | 1.4 | 57        |
| 166 | Comparative Studies of Delignification Caused by <i>Ganoderma</i> Species. Applied and Environmental Microbiology, 1990, 56, 1932-1943.                                                                                               | 1.4 | 51        |
| 167 | Biological Degradation of Wood. Advances in Chemistry Series, 1989, , 141-174.                                                                                                                                                        | 0.6 | 71        |
| 168 | Canker formation and decay in sugar maple and paper birch infected by <i>Cerrenaunicolor</i> .<br>Canadian Journal of Forest Research, 1989, 19, 225-231.                                                                             | 0.8 | 22        |
| 169 | Detection of Lignin Peroxidase and Xylanase by Immunocytochemical Labeling in Wood Decayed by Basidiomycetes. Applied and Environmental Microbiology, 1989, 55, 1457-1465.                                                            | 1.4 | 76        |
| 170 | Colloidal Gold Cytochemistry of Endo-1,4-β-Glucanase, 1,4-β- D -Glucan Cellobiohydrolase, and<br>Endo-1,4-β-Xylanase: Ultrastructure of Sound and Decayed Birch Wood. Applied and Environmental<br>Microbiology, 1989, 55, 2293-2301. | 1.4 | 31        |
| 171 | Selection of white-rot fungi for biopulping. Bioresource Technology, 1988, 15, 93-101.                                                                                                                                                | 0.3 | 84        |
| 172 | Effects of fungal degradation on the CuO oxidation products of lignin: A controlled laboratory study. Geochimica Et Cosmochimica Acta, 1988, 52, 2717-2726.                                                                           | 1.6 | 436       |
| 173 | Morphological aspects of wood degradation. Methods in Enzymology, 1988, 160, 193-200.                                                                                                                                                 | 0.4 | 1         |
| 174 | Mortality of Scots pine following inoculation with the pinewood nematode,<br>Bursaphelenchusxylophilus. Canadian Journal of Forest Research, 1988, 18, 574-580.                                                                       | 0.8 | 7         |
| 175 | A rapid technique using epoxy resin Quetol 651 to prepare woody plant tissues for ultrastructural study. Canadian Journal of Botany, 1988, 66, 677-682.                                                                               | 1.2 | 37        |
| 176 | Ultrastructural Localization of Hemicellulose in Birch Wood <i>(Betula papyrifera)</i> Decayed by<br>Brown and White Rot Fungi. Holzforschung, 1988, 42, 393-398.                                                                     | 0.9 | 33        |
| 177 | Lignin Distribution in Wood Delignified by White-Rot Fungi: X-Ray Microanalysis of Decayed Wood<br>Treated with Bromine. Holzforschung, 1988, 42, 281-288.                                                                            | 0.9 | 23        |
| 178 | Delignification of Wood Chips and Pulps by Using Natural and Synthetic Porphyrins: Models of Fungal<br>Decay. Applied and Environmental Microbiology, 1988, 54, 62-68.                                                                | 1.4 | 44        |
| 179 | Assessment of 30 White Rot Basidiomycetes for Selective Lignin Degradation. Holzforschung, 1987, 41, 343-349.                                                                                                                         | 0.9 | 156       |
| 180 | New directions in forest products pathology. Canadian Journal of Plant Pathology, 1987, 9, 361-369.                                                                                                                                   | 0.8 | 11        |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Lignin Distribution in Cell Walls of Birch Wood Decayed by White Rot Basidiomycetes.<br>Phytopathology, 1987, 77, 684.                                                                          | 1.1 | 65        |
| 182 | A discussion of microstructural changes in wood during decomposition by white rot basidiomycetes.<br>Canadian Journal of Botany, 1986, 64, 905-911.                                             | 1.2 | 85        |
| 183 | Ultrastructural Aspects of the Conidium Cell Wall of Sphaeropsis Sapinea. Mycologia, 1986, 78, 960-963.                                                                                         | 0.8 | 13        |
| 184 | Selective Delignification of Birch Wood <i>(Betula papyrifera)</i> by <i>Hirschioporus pargamenus</i> in the Field and Laboratory. Holzforschung, 1986, 40, 183-190.                            | 0.9 | 19        |
| 185 | Ultrastructural Aspects of Wood Delignification by <i>Phlebia (Merulius) tremellosus</i> . Applied and Environmental Microbiology, 1986, 52, 239-245.                                           | 1.4 | 60        |
| 186 | Changes in structural and chemical components of wood delignified by fungi. Wood Science and Technology, 1985, 19, 35-46.                                                                       | 1.4 | 86        |
| 187 | The distribution of <i>Endocronartiumharknessii</i> and <i>Cronartiumquercuum</i> on jack pine in Minnesota. Canadian Journal of Forest Research, 1985, 15, 1045-1048.                          | 0.8 | 2         |
| 188 | Effective use of ethylene-releasing agents to prevent spread of eastern dwarf mistletoe on black<br>spruce. Canadian Journal of Forest Research, 1985, 15, 872-876.                             | 0.8 | 6         |
| 189 | Selective Delignification of Aspen Wood Blocks In Vitro by Three White Rot Basidiomycetes. Applied and Environmental Microbiology, 1985, 50, 568-572.                                           | 1.4 | 27        |
| 190 | Selective delignification of wood by white-rot fungi. Applied Biochemistry and Biotechnology, 1984, 9, 323-324.                                                                                 | 1.4 | 9         |
| 191 | Characteristics of black zones associated with delignified wood. Applied Biochemistry and Biotechnology, 1984, 9, 399-400.                                                                      | 1.4 | Ο         |
| 192 | Selective Delignification of Eastern Hemlock byGanoderma tsugae. Phytopathology, 1984, 74, 153.                                                                                                 | 1.1 | 51        |
| 193 | Manganese Accumulation in Wood Decayed by White Rot Fungi. Phytopathology, 1984, 74, 725.                                                                                                       | 1.1 | 103       |
| 194 | <i>Xylobolus frustulatus</i> Decay of Oak: Patterns of Selective Delignification and Subsequent<br>Cellulose Removal. Applied and Environmental Microbiology, 1984, 47, 670-676.                | 1.4 | 32        |
| 195 | Screening Wood Decayed by White Rot Fungi for Preferential Lignin Degradation. Applied and Environmental Microbiology, 1984, 48, 647-653.                                                       | 1.4 | 212       |
| 196 | The pine-wood nematode, <i>Bursaphelenchusxylophilus</i> , in Minnesota and Wisconsin:<br>insect associates and transmission studies. Canadian Journal of Forest Research, 1983, 13, 1068-1076. | 0.8 | 85        |
| 197 | An Unusual Decay Pattern in Brown-Rotted Wood. Mycologia, 1983, 75, 552.                                                                                                                        | 0.8 | 12        |
| 198 | An Unusual Decay Pattern in Brown-Rotted Wood. Mycologia, 1983, 75, 552-556.                                                                                                                    | 0.8 | 16        |

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Decay and canker formation by <i>Phellinuspini</i> in white and balsam fir. Canadian Journal of Forest Research, 1982, 12, 538-544.                                             | 0.8 | 19        |
| 200 | Patterns of decay caused by <i>Inonotus dryophilus</i> (Aphyllophorales: Hymenochaetaceae), a white-pocket rot fungus of oaks. Canadian Journal of Botany, 1982, 60, 2770-2779. | 1.2 | 43        |
| 201 | Actinomycetes in discolored wood of living silver maple. Canadian Journal of Botany, 1981, 59, 1-7.                                                                             | 1.2 | 25        |
| 202 | Wood decomposition by <i>Phellinus</i> ( <i>Fomes</i> ) <i>pini</i> : a scanning electron microscopy study. Canadian Journal of Botany, 1980, 58, 1496-1503.                    | 1.2 | 55        |
| 203 | Breakdown of Douglas-fir phloem by a lignocellulose-degradingStreptomyces. Current Microbiology, 1979, 2, 123-126.                                                              | 1.0 | 34        |
| 204 | Associations Among Bacteria, Yeasts, and Basidiomycetes During Wood Decay. Phytopathology, 1978,<br>68, 631.                                                                    | 1.1 | 104       |