
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8531131/publications.pdf Version: 2024-02-01

FDIK NTDRAKKED

#	Article	IF	CITATIONS
1	Biomechanics in Small Artery Remodeling. Cardiac and Vascular Biology, 2021, , 47-68.	0.2	Ο
2	Mapping Solute Clearance From the Mouse Hippocampus Using a 3D Imaging Cryomicrotome. Frontiers in Neuroscience, 2021, 15, 631325.	1.4	1
3	Recovery of Hypoxic Regions in a Rat Model of Microembolism. Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 105739.	0.7	8
4	Brain solute transport is more rapid in periarterial than perivenous spaces. Scientific Reports, 2021, 11, 16085.	1.6	16
5	Quantitative 3D analysis of tissue damage in a rat model of microembolization. Journal of Biomechanics, 2021, 128, 110723.	0.9	6
6	Celiprolol but not losartan improves the biomechanical integrity of the aorta in a mouse model of vascular Ehlers–Danlos syndrome. Cardiovascular Research, 2020, 116, 457-465.	1.8	21
7	Microembolus clearance through angiophagy is an auxiliary mechanism preserving tissue perfusion in the rat brain. Acta Neuropathologica Communications, 2020, 8, 195.	2.4	13
8	Altered brain fluid management in a rat model of arterial hypertension. Fluids and Barriers of the CNS, 2020, 17, 41.	2.4	12
9	The Cerebral Microcirculation. Updates in Hypertension and Cardiovascular Protection, 2020, , 59-72.	0.1	1
10	Extravasation of Microspheres in a Rat Model of Silent Brain Infarcts. Stroke, 2019, 50, 1590-1594.	1.0	18
11	Paravascular spaces: entry to or exit from the brain?. Experimental Physiology, 2019, 104, 1013-1017.	0.9	34
12	Thrombospondin-4 mediates cardiovascular remodelling in angiotensin II-induced hypertension. Cardiovascular Pathology, 2018, 35, 12-19.	0.7	15
13	Paravascular spaces at the brain surface: Low resistance pathways for cerebrospinal fluid flow. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 719-726.	2.4	133
14	Blood–brain and blood–cerebrospinal fluid barrier permeability in spontaneously hypertensive rats. Fluids and Barriers of the CNS, 2018, 15, 26.	2.4	21
15	Sustained conduction of vasomotor responses in rat mesenteric arteries in a twoâ€compartment inÂvitro setâ€up. Acta Physiologica, 2018, 224, e13099.	1.8	8
16	Nur77 protects against adverse cardiac remodelling by limiting neuropeptide Y signalling in the sympathoadrenal-cardiac axis. Cardiovascular Research, 2018, 114, 1617-1628.	1.8	19
17	Paravascular channels, cisterns, and the subarachnoid space in the rat brain: A single compartment with preferential pathways. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1374-1385.	2.4	104
18	Enhanced interstitial fluid drainage in the hippocampus of spontaneously hypertensive rats. Scientific Reports, 2017, 7, 744.	1.6	27

#	Article	IF	CITATIONS
19	Hypertension reduces soluble guanylyl cyclase expression in the mouse aorta via the Notch signaling pathway. Scientific Reports, 2017, 7, 1334.	1.6	37
20	Optimization of Vascular Casting for Three-Dimensional Fluorescence Cryo-Imaging of Collateral Vessels in the Ischemic Rat Hindlimb. Microscopy and Microanalysis, 2017, 23, 77-87.	0.2	8
21	Endothelial basement membrane laminin 511 is essential for shear stress response. EMBO Journal, 2017, 36, 183-201.	3.5	75
22	Thrombospondin-4 knockout in hypertension protects small-artery endothelial function but induces aortic aneurysms. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1486-H1493.	1.5	16
23	Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases. Cellular and Molecular Neurobiology, 2016, 36, 181-194.	1.7	297
24	Gene Expression and MicroRNA Expression Analysis in Small Arteries of Spontaneously Hypertensive Rats. Evidence for ER Stress. PLoS ONE, 2015, 10, e0137027.	1.1	21
25	Cerebral Artery Remodeling in Rodent Models of Subarachnoid Hemorrhage. Journal of Vascular Research, 2015, 52, 103-115.	0.6	6
26	Clearance from the mouse brain by convection of interstitial fluid towards the ventricular system. Fluids and Barriers of the CNS, 2015, 12, 23.	2.4	85
27	Tissue Transglutaminase in Alzheimer's Disease: Involvement in Pathogenesis and its Potential as a Therapeutic Target. Journal of Alzheimer's Disease, 2014, 42, S289-S303.	1.2	27
28	Heterogeneity in Arterial Remodeling among Sublines of Spontaneously Hypertensive Rats. PLoS ONE, 2014, 9, e107998.	1.1	17
29	Activation of Extracellular Transglutaminase 2 by Mechanical Force in the Arterial Wall. Journal of Vascular Research, 2013, 50, 383-395.	0.6	31
30	Relation between active and passive biomechanics of small mesenteric arteries during remodeling. Journal of Biomechanics, 2013, 46, 1420-1426.	0.9	13
31	Testosterone and β-oestradiol prevent inward remodelling of rat small mesenteric arteries: role of NO and transglutaminase. Clinical Science, 2013, 124, 719-728.	1.8	9
32	Smooth Muscle Contractile Plasticity in Rat Mesenteric Small Arteries: Sensitivity to Specific Vasoconstrictors, Distension and Inflammatory Cytokines. Journal of Vascular Research, 2013, 50, 249-262.	0.6	10
33	Intrinsic balance of small artery active and passive diameterâ€ŧension relations. FASEB Journal, 2013, 27, 902.6.	0.2	Ο
34	IMAGING PERIVASCULAR TRANSPORT IN THE BRAIN. FASEB Journal, 2013, 27, 709.3.	0.2	0
35	Vena cava and aortic smooth muscle cells express transglutaminases 1 and 4 in addition to transglutaminase 2. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1355-H1366.	1.5	26
36	Transglutaminase activity regulates atherosclerotic plaque composition at locations exposed to oscillatory shear stress. Atherosclerosis, 2012, 224, 355-362.	0.4	23

#	Article	IF	CITATIONS
37	Vascular smooth muscle cells remodel collagen matrices by long-distance action and anisotropic interaction. Medical and Biological Engineering and Computing, 2012, 50, 701-715.	1.6	15
38	Smooth Muscle Biomechanics and Plasticity: Relevance for Vascular Calibre and Remodelling. Basic and Clinical Pharmacology and Toxicology, 2012, 110, 35-41.	1.2	30
39	Transglutaminase 2 is secreted from smooth muscle cells by transamidation-dependent microparticle formation. Amino Acids, 2012, 42, 961-973.	1.2	26
40	Tissue transglutaminase activity is involved in the differentiation of oligodendrocyte precursor cells into myelinâ€forming oligodendrocytes during CNS remyelination. Glia, 2011, 59, 1622-1634.	2.5	28
41	The Redox State of Transglutaminase 2 Controls Arterial Remodeling. PLoS ONE, 2011, 6, e23067.	1.1	44
42	The Redox State of Transglutaminase Controls Arterial Remodeling. FASEB Journal, 2011, 25, 1093.2.	0.2	0
43	Strain-dependent susceptibility for hypertension in mice resides in the natural killer gene complex. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1273-H1282.	1.5	28
44	Small Artery Remodeling: Current Concepts and Questions. Journal of Vascular Research, 2010, 47, 183-202.	0.6	86
45	Nuclear receptor Nur77 inhibits vascular outward remodelling and reduces macrophage accumulation and matrix metalloproteinase levels. Cardiovascular Research, 2010, 87, 561-568.	1.8	42
46	Role of transglutaminases in cuff-induced atherosclerotic lesion formation in femoral arteries of ApoE3 Leiden mice. Atherosclerosis, 2010, 213, 77-84.	0.4	17
47	Shear Stress, Reactive Oxygen Species, and Arterial Structure and Function. Antioxidants and Redox Signaling, 2009, 11, 1699-1709.	2.5	37
48	Calcification Locates to Transglutaminases in Advanced Human Atherosclerotic Lesions. American Journal of Pathology, 2009, 175, 1374-1379.	1.9	16
49	Decomposition cross-correlation for analysis of collagen matrix deformation by single smooth muscle cells. Medical and Biological Engineering and Computing, 2008, 46, 443-450.	1.6	2
50	MBEC special issue on microcirculation "engineering principles of vascular networks― Medical and Biological Engineering and Computing, 2008, 46, 407-9.	1.6	4
51	Small Artery Remodeling and Erythrocyte Deformability in <i>L</i> -NAME-Induced Hypertension: Role of Transglutaminases. Journal of Vascular Research, 2008, 45, 10-18.	0.6	49
52	Transglutaminases in Vascular Biology: Relevance for Vascular Remodeling and Atherosclerosis. Journal of Vascular Research, 2008, 45, 271-278.	0.6	77
53	Blood flow-dependent arterial remodelling is facilitated by inflammation but directed by vascular tone. Cardiovascular Research, 2008, 78, 341-348.	1.8	78
54	A Vascular Bone Collector. Circulation Research, 2008, 102, 507-509.	2.0	8

#	Article	IF	CITATIONS
55	Downâ€regulation of BMPâ€4 Expression in Coronary Arterial Endothelial Cells: Role of Shear Stress and the cAMP/PKA Pathway. FASEB Journal, 2008, 22, 1145.1.	0.2	0
56	Downregulation of Bone Morphogenetic Protein 4 Expression in Coronary Arterial Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 776-782.	1.1	51
57	TR3 Nuclear Orphan Receptor Prevents Cyclic Stretch-Induced Proliferation of Venous Smooth Muscle Cells. American Journal of Pathology, 2006, 168, 2027-2035.	1.9	62
58	Calcium channel blockade prevents pressure-dependent inward remodeling in isolated subendocardial resistance vessels. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H1236-H1245.	1.5	34
59	Flow-Dependent Remodeling of Small Arteries in Mice Deficient for Tissue-Type Transglutaminase. Circulation Research, 2006, 99, 86-92.	2.0	106
60	PRESSURE―AND FLOWâ€DEPENDENT VASCULAR REMODELING IN MICE DEFICIENT FOR TISSUEâ€TYPE TRANSGLUTAMINASE. FASEB Journal, 2006, 20, A710.	0.2	0
61	Mechanics of microvascular remodeling. Clinical Hemorheology and Microcirculation, 2006, 34, 35-41.	0.9	22
62	Small Artery Remodeling Depends on Tissue-Type Transglutaminase. Circulation Research, 2005, 96, 119-126.	2.0	164
63	Flow inhibits inward remodeling in cannulated porcine small coronary arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2632-H2640.	1.5	33
64	Remodeling of resistance arteries in organoid culture is modulated by pressure and pressure pulsation and depends on vasomotion. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H2052-H2056.	1.5	28
65	Activation of Resistance Arteries with Endothelin-1: From Vasoconstriction to Functional Adaptation and Remodeling. Journal of Vascular Research, 2004, 41, 174-182.	0.6	70
66	Differential structural adaptation to haemodynamics along single rat cremaster arterioles. Journal of Physiology, 2003, 548, 549-555.	1.3	28
67	Inward Remodeling Follows Chronic Vasoconstriction in Isolated Resistance Arteries. Journal of Vascular Research, 2002, 39, 12-20.	0.6	140
68	Vasomotor Effects Of ARG-Gly-ASP (RGD) Peptides Are Limited And Not Related To Endothelium-Derived Hyperpolarizing Factor-Mediated Relaxation In Rat Mesenteric Arteries. Clinical and Experimental Pharmacology and Physiology, 2001, 28, 873-876.	0.9	5
69	Organoid culture of cannulated rat resistance arteries: effect of serum factors on vasoactivity and remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H1233-H1240.	1.5	58
70	Endothelin-1-Induced Constriction Inhibits Nitric-Oxide-Mediated Dilation in Isolated Rat Resistance Arteries. Journal of Vascular Research, 1997, 34, 418-424.	0.6	18
71	Components of acetylcholine-induced dilation in isolated rat arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H1848-H1853.	1.5	28