List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8530886/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Puffing/micro-explosion in composite multi-component droplets. International Journal of Heat and Mass Transfer, 2022, 184, 122210.	2.5	7
2	Effects of water subdroplet location on the start of puffing/micro-explosion in composite fuel-water droplets. International Journal of Heat and Mass Transfer, 2022, 186, 122466.	2.5	15
3	Time evolution of composite fuel/water droplet radii before the start of puffing/micro-explosion. International Journal of Heat and Mass Transfer, 2022, 191, 122838.	2.5	14
4	Heating and Evaporation of Mono-component Droplets. Mathematical Engineering, 2022, , 103-174.	0.1	1
5	Confined Vortex Rings. Mathematical Engineering, 2021, , 103-119.	0.1	1
6	CFD Modelling of Gas-Turbine Fuel Droplet Heating, Evaporation and Combustion. , 2021, , 197-201.		1
7	Viscous Vortex Rings. Mathematical Engineering, 2021, , 51-86.	0.1	0
8	Formation Number of Vortex Rings. Mathematical Engineering, 2021, , 121-139.	0.1	0
9	An Improved Prediction of Pre-Combustion Processes, Using the Discrete Multicomponent Model. Sustainability, 2021, 13, 2937.	1.6	3
10	Puffing/micro-explosion in rapeseed oil/water droplets: The effects of coal micro-particles in water. Fuel, 2021, 289, 119814.	3.4	30
11	Auto-selection of quasi-components/components in the multi-dimensional quasi-discrete model. Fuel, 2021, 294, 120245.	3.4	5
12	Puffing/micro-explosion of two closely spaced composite droplets in tandem: Experimental results and modelling. International Journal of Heat and Mass Transfer, 2021, 176, 121449.	2.5	19
13	Evaporation of water/ethanol droplets in an air flow: Experimental study and modelling. International Journal of Heat and Mass Transfer, 2021, 177, 121502.	2.5	18
14	Modelling of aviation kerosene droplet heating and evaporation using complete fuel composition and surrogates. Fuel, 2021, 305, 121564.	3.4	17
15	Temperature measurements in a string of three closely spaced droplets before the start of puffing/micro-explosion: Experimental results and modelling. International Journal of Heat and Mass Transfer, 2021, 181, 121837.	2.5	8
16	Heating and Evaporation of Droplets of Multicomponent and Blended Fuels: A Review of Recent Modeling Approaches. Energy & Fuels, 2021, 35, 18220-18256.	2.5	9
17	A model for puffing/microexplosions in water/fuel emulsion droplets. International Journal of Heat and Mass Transfer, 2020, 149, 119208.	2.5	19
18	Application of the laser induced phosphorescence method to the analysis of temperature distribution in heated and evaporating droplets. International Journal of Heat and Mass Transfer, 2020, 163, 120421.	2.5	11

#	Article	IF	CITATIONS
19	A new approach to modelling micro-explosions in composite droplets. International Journal of Heat and Mass Transfer, 2020, 161, 120238.	2.5	34
20	Micro-explosion and autoignition of composite fuel/water droplets. Combustion and Flame, 2019, 210, 479-489.	2.8	39
21	A simple model for puffing/micro-explosions in water-fuel emulsion droplets. International Journal of Heat and Mass Transfer, 2019, 131, 815-821.	2.5	83
22	Blended E85–Diesel Fuel Droplet Heating and Evaporation. Energy & Fuels, 2019, 33, 2477-2488.	2.5	12
23	Parameterisations of slow invariant manifolds: application to a spray ignition and combustion model. Journal of Engineering Mathematics, 2019, 114, 1-17.	0.6	4
24	A new model for a drying droplet. International Journal of Heat and Mass Transfer, 2018, 122, 451-458.	2.5	26
25	An efficient Adaptive Mesh Refinement (AMR) algorithm for the Discontinuous Galerkin method: Applications for the computation of compressible two-phase flows. Journal of Computational Physics, 2018, 363, 399-427.	1.9	22
26	Modelling of the evolution of a droplet cloud in a turbulent flow. International Journal of Multiphase Flow, 2018, 104, 233-257.	1.6	15
27	Modelling of a two-phase vortex-ring flow using an analytical solution for the carrier phase. Applied Mathematics and Computation, 2018, 326, 159-169.	1.4	6
28	Ethanol/Gasoline Droplet Heating and Evaporation: Effects of Fuel Blends and Ambient Conditions. Energy & Fuels, 2018, 32, 6498-6506.	2.5	32
29	A mathematical model for heating and evaporation of a multi-component liquid film. International Journal of Heat and Mass Transfer, 2018, 117, 252-260.	2.5	19
30	Order reduction in models of spray ignition and combustion. Combustion and Flame, 2018, 187, 122-128.	2.8	24
31	A model for multi-component droplet heating and evaporation and its implementation into ANSYS Fluent. International Communications in Heat and Mass Transfer, 2018, 90, 29-33.	2.9	29
32	Modelling of Droplet Heating and Evaporation. Energy, Environment, and Sustainability, 2018, , 45-75.	0.6	1
33	Modelling of sprays: recent results and future challenges. Journal of Physics: Conference Series, 2018, 1096, 012052.	0.3	2
34	Calculation of concentration fields of high-inertia aerosol particles in the flow past a cylindrical fibre. IOP Conference Series: Earth and Environmental Science, 2018, 107, 012109.	0.2	1
35	The impacts of the activity coefficient on heating and evaporation of ethanol/gasoline fuel blends. International Communications in Heat and Mass Transfer, 2018, 98, 177-182.	2.9	22
36	Heating and evaporation of suspended water droplets: Experimental studies and modelling. International Journal of Heat and Mass Transfer, 2018, 127, 92-106.	2.5	76

#	Article	IF	CITATIONS
37	A model for heating and evaporation of a droplet cloud and its implementation into ANSYS Fluent. International Communications in Heat and Mass Transfer, 2018, 97, 85-91.	2.9	13
38	Formation number of confined vortex rings. Physical Review Fluids, 2018, 3, .	1.0	12
39	THE IMPACT OF FUEL BLENDS AND AMBIENT CONDITIONS ON THE HEATING AND EVAPORATION OF DIESEL AND BIODIESEL FUEL DROPLETS. , 2018, , .		3
40	Meshless Methods for â€~Gas - Evaporating Droplet' Flow Modelling. Trends in Mathematics, 2018, , 65-70.	0.1	0
41	Mathematical modelling of heating and evaporation of a spheroidal droplet. International Journal of Heat and Mass Transfer, 2017, 108, 2181-2190.	2.5	54
42	Modelling of fuel droplet heating and evaporation: Recent results and unsolved problems. Fuel, 2017, 196, 69-101.	3.4	266
43	Meshless methods for â€~gas – evaporating droplet' flow modelling. Journal of Physics: Conference Series, 2017, 811, 012014.	0.3	2
44	A model for confined vortex rings with elliptical-core vorticity distribution. Journal of Fluid Mechanics, 2017, 811, 67-94.	1.4	9
45	Modelling of blended Diesel and biodiesel fuel droplet heating and evaporation. Fuel, 2017, 187, 349-355.	3.4	36
46	Positively invariant manifolds: concept and applications. Journal of Physics: Conference Series, 2017, 811, 012015.	0.3	0
47	Models for droplet heating and evaporation: an application to biodiesel, diesel and gasoline fuels. International Journal of Engineering Systems Modelling and Simulation, 2017, 9, 32.	0.2	1
48	THE FULLY LAGRANGIAN APPROACH TO THE ANALYSIS OF PARTICLE/DROPLET DYNAMICS: IMPLEMENTATION INTO ANSYS FLUENT AND APPLICATION TO GASOLINE SPRAYS. Atomization and Sprays, 2017, 27, 493-510.	0.3	15
49	Models for droplet heating and evaporation: an application to biodiesel, diesel and gasoline fuels. International Journal of Engineering Systems Modelling and Simulation, 2017, 9, 32.	0.2	2
50	Modelling of automotive fuel droplet heating and evaporation: mathematical tools and approximations. Journal of Physics: Conference Series, 2016, 727, 012015.	0.3	2
51	A combined viscous-vortex, thermal-blob and Lagrangian method for non-isothermal, two-phase flow modelling. International Journal of Heat and Fluid Flow, 2016, 58, 93-102.	1.1	8
52	A model for droplet heating and its implementation into ANSYS Fluent. International Communications in Heat and Mass Transfer, 2016, 76, 265-270.	2.9	56
53	A self-consistent kinetic model for droplet heating and evaporation. International Journal of Heat and Mass Transfer, 2016, 93, 1206-1217.	2.5	19
54	A new formulation of physical surrogates of FACE A gasoline fuel based on heating and evaporation characteristics. Fuel, 2016, 176, 56-62.	3.4	31

#	Article	IF	CITATIONS
55	Quantum-chemical analysis of the processes at the surfaces of Diesel fuel droplets. Fuel, 2016, 165, 405-412.	3.4	9
56	Modelling of confined vortex rings. Journal of Fluid Mechanics, 2015, 774, 267-297.	1.4	13
57	A fully meshless method for â€~gas – evaporating droplet' flow modelling. Proceedings in Applied Mathematics and Mechanics, 2015, 15, 685-686.	0.2	0
58	New approaches to the modelling of multi-component fuel droplet heating and evaporation. Journal of Physics: Conference Series, 2015, 585, 012014.	0.3	4
59	Modelling of gasoline fuel droplets heating and evaporation. Fuel, 2015, 159, 373-384.	3.4	46
60	The effects of internal molecular dynamics on the evaporation/condensation of n-dodecane. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	8
61	Modelling of biodiesel fuel droplet heating and evaporation: Effects of fuel composition. Fuel, 2015, 154, 308-318.	3.4	30
62	Effects of the surroundings and conformerisation of <i>n</i> -dodecane molecules on evaporation/condensation processes. Journal of Chemical Physics, 2015, 142, 034502.	1.2	14
63	The design of a full flow dilution tunnel with a critical flow Venturi for the measurement of diesel engine particulate emission. FME Transactions, 2015, 43, 99-106.	0.7	4
64	Two approaches to modelling the heating of evaporating droplets. International Communications in Heat and Mass Transfer, 2014, 57, 353-356.	2.9	20
65	Modelling of biodiesel fuel droplet heating and evaporation. Fuel, 2014, 115, 559-572.	3.4	84
66	A solution of the Boltzmann equations in the presence of three components and inelastic collisions. International Journal of Heat and Mass Transfer, 2014, 71, 26-34.	2.5	7
67	A study of the evaporation and condensation of n-alkane clusters and nanodroplets using quantum chemical methods. Fluid Phase Equilibria, 2014, 366, 99-107.	1.4	15
68	Heating and evaporation of a two-component droplet: Hydrodynamic and kinetic models. International Journal of Heat and Mass Transfer, 2014, 79, 704-712.	2.5	21
69	Droplets and Sprays. , 2014, , .		113
70	A multi-dimensional quasi-discrete model for the analysis of Diesel fuel droplet heating and evaporation. Fuel, 2014, 129, 238-266.	3.4	71
71	Heating and Evaporation of Monocomponent Droplets. , 2014, , 97-142.		1

72 Modelling of Biodiesel and Diesel Fuel Droplet Heating and Evaporation. , 2014, , .

#	Article	IF	CITATIONS
73	Heating and Evaporation of Multicomponent Droplets. , 2014, , 143-178.		0
74	Heating, Evaporation and Autoignition of Sprays. , 2014, , 245-276.		0
75	Spray Formation and Penetration. , 2014, , 9-48.		0
76	Kinetic Modelling of Droplet Heating and Evaporation. , 2014, , 179-244.		0
77	Heating of Non-evaporating Droplets. , 2014, , 49-95.		0
78	A kinetic model of droplet heating and evaporation: Effects of inelastic collisions and a non-unity evaporation coefficient. International Journal of Heat and Mass Transfer, 2013, 56, 525-537.	2.5	22
79	Modelling of heating and evaporation of gasoline fuel droplets: A comparative analysis of approximations. Fuel, 2013, 111, 643-647.	3.4	26
80	A quantum chemical study of the processes during the evaporation of real-life Diesel fuel droplets. Fluid Phase Equilibria, 2013, 356, 146-156.	1.4	20
81	The application of the Global Quasi-Linearisation technique to the analysis of the cyclohexane/air mixture autoignition. Applied Mathematics and Computation, 2013, 219, 7338-7347.	1.4	9
82	Jet and Vortex Ring-Like Structures in Internal Combustion Engines: Stability Analysis and Analytical Solutions. Procedia IUTAM, 2013, 8, 196-204.	1.2	1
83	Non-modal stability of round viscous jets. Journal of Fluid Mechanics, 2013, 716, 96-119.	1.4	24
84	A solution of the Boltzmann equation in the presence of inelastic collisions. Journal of Computational Physics, 2013, 232, 87-99.	1.9	14
85	Droplet heating and evaporation: Hydrodynamic, kinetic and molecular dynamics models. , 2013, , .		0
86	A COMBINED FULLY LAGRANGIAN APPROACH TO MESH-FREE MODELLING OF TRANSIENT TWO-PHASE FLOWS. Atomization and Sprays, 2013, 23, 47-69.	0.3	15
87	New Models for Droplet Heating and Evaporation. Asian Journal of Scientific Research, 2013, 6, 177-186.	0.3	0
88	Fully Lagrangian Modeling of Two-Phase Impulse Microjets. , 2013, , .		0
89	Molecular Dynamics Study of Condensation/Evaporation and Velocity Distribution of N-Dodecane at Liquid-Vapour Phase Equilibria. Journal of Thermal Science and Technology, 2012, 7, 288-300.	0.6	26
90	Wave packet analysis and break-up length calculations for an accelerating planar liquid jet. Fluid Dynamics Research, 2012, 44, 015503.	0.6	9

#	Article	IF	CITATIONS
91	CFD modelling of cyclohexane auto-ignition in an RCM. Fuel, 2012, 96, 192-203.	3.4	12
92	A quasi-discrete model for droplet heating and evaporation: Application to Diesel and gasoline fuels. Fuel, 2012, 97, 685-694.	3.4	36
93	A breakup model for transient Diesel fuel sprays. Fuel, 2012, 97, 288-305.	3.4	68
94	New solutions to the species diffusion equation inside droplets in the presence of the moving boundary. International Journal of Heat and Mass Transfer, 2012, 55, 2014-2021.	2.5	22
95	DROPLET HEATING AND EVAPORATIONâ [°] RECENT RESULTS AND UNSOLVED PROBLEMS. Computational Thermal Sciences, 2012, 4, 485-496.	0.5	6
96	ADVANCEMENT IN TURBULENT SPRAY MODELLING: THE EFFECT OF INTERNAL TEMPERATURE GRADIENT IN DROPLETS. , 2012, , .		3
97	KINETIC AND MOLECULAR DYNAMICS SIMULATIONS OF N-DODECANE DROPLET HEATING AND EVAPORATION. , 2012, , .		0
98	DROPLET HEATING AND EVAPORATION - RECENT RESULTS AND UNSOLVED PROBLEMS. , 2012, , .		0
99	Modelling of droplet heating and evaporation: recent results and unsolved problems. Journal of Physics: Conference Series, 2011, 268, 012026.	0.3	1
100	MONO- AND MULTI-COMPONENT DROPLET COOLING/HEATING AND EVAPORATION: COMPARATIVE ANALYSIS OF NUMERICAL MODELS. Atomization and Sprays, 2011, 21, 907-931.	0.3	31
101	Stability analysis and breakup length calculations for steady planar liquid jets. Journal of Fluid Mechanics, 2011, 668, 384-411.	1.4	11
102	An accurate numerical solution for the transient heating of an evaporating spherical droplet. Applied Mathematics and Computation, 2011, 217, 9219-9233.	1.4	41
103	Transient heating of an evaporating droplet with presumed time evolution of its radius. International Journal of Heat and Mass Transfer, 2011, 54, 1278-1288.	2.5	44
104	A quasi-discrete model for heating and evaporation of complex multicomponent hydrocarbon fuel droplets. International Journal of Heat and Mass Transfer, 2011, 54, 4325-4332.	2.5	54
105	Molecular dynamics study on evaporation and condensation of <i>n</i> -dodecane at liquid–vapor phase equilibria. Journal of Chemical Physics, 2011, 134, 164309.	1.2	67
106	Molecular dynamics study of the processes in the vicinity of the n-dodecane vapour/liquid interface. Physics of Fluids, 2011, 23, .	1.6	51
107	Particle grouping in standing and moving wave velocity fields. International Journal of Engineering Systems Modelling and Simulation, 2010, 2, 177.	0.2	3
	Earl Develop Use the early for a constraint build a develop and Kinette Madela 2010		

108 Fuel Droplet Heating and Evaporation: New Hydrodynamic and Kinetic Models. , 2010, , .

#	Article	IF	CITATIONS
109	A simplified model for bi-component droplet heating and evaporation. International Journal of Heat and Mass Transfer, 2010, 53, 4495-4505.	2.5	147
110	Order reduction of a non-Lipschitzian model of monodisperse spray ignition. Mathematical and Computer Modelling, 2010, 52, 529-537.	2.0	16
111	Monodisperse monocomponent fuel droplet heating and evaporation. Fuel, 2010, 89, 3995-4001.	3.4	33
112	Transient heating of an evaporating droplet. International Journal of Heat and Mass Transfer, 2010, 53, 2826-2836.	2.5	53
113	Vortex Ring-like Structures in a Non-evaporating Gasoline-fuel Spray: Simplified Models versus Experimental Results. , 2010, , .		0
114	MODELING OF THE PROCESSES IN DIESEL ENGINE-LIKE CONDITIONS: EFFECTS OF FUEL HEATING AND EVAPORATION. Atomization and Sprays, 2010, 20, 737-747.	0.3	11
115	Modeling of sprays using computational fluid dynamics codes. Pollack Periodica, 2009, 4, 5-16.	0.2	6
116	Vortex ring-like structures in gasoline fuel sprays under cold-start conditions. International Journal of Engine Research, 2009, 10, 195-214.	1.4	30
117	A generalized vortex ring model. Journal of Fluid Mechanics, 2009, 622, 233-258.	1.4	29
118	KINETIC ALGORITHM FOR MODELING THE DROPLET EVAPORATION PROCESS IN THE PRESENCE OF HEAT FLUX AND BACKGROUND GAS. Small Group Research, 2009, 19, 473-489.	1.8	24
119	Particle grouping in oscillating flows. European Journal of Mechanics, B/Fluids, 2008, 27, 131-149.	1.2	31
120	Grouping and trapping of evaporating droplets in an oscillating gas flow. International Journal of Heat and Fluid Flow, 2008, 29, 415-426.	1.1	35
121	Monodisperse droplet heating and evaporation: Experimental study and modelling. International Journal of Heat and Mass Transfer, 2008, 51, 3932-3945.	2.5	62
122	Droplet Heating and Evaporation: Hydrodynamic and Kinetic Models. Heat Transfer Research, 2008, 39, 293-303.	0.9	1
123	Numerical Modeling of Droplet Transient Heating and Evaporation. Heat Transfer Research, 2008, 39, 51-64.	0.9	1
124	Approximate Analysis of Thermal Radiation Absorption in Fuel Droplets. Journal of Heat Transfer, 2007, 129, 1246.	1.2	12
125	System decomposition technique for spray modelling in CFD codes. Computers and Fluids, 2007, 36, 601-610.	1.3	15
126	Transient heating of a semitransparent spherical body. International Journal of Thermal Sciences, 2007, 46, 444-457.	2.6	23

#	Article	IF	CITATIONS
127	Evaporation of droplets into a background gas: Kinetic modelling. International Journal of Heat and Mass Transfer, 2007, 50, 2675-2691.	2.5	48
128	Radiation effect on thermal explosion in a gas containing evaporating fuel droplets. International Journal of Thermal Sciences, 2007, 46, 358-370.	2.6	25
129	Thermal Explosion in a Flammable Gas Containing Fuel Droplets: Asymptotic Analysis. Heat Transfer Research, 2007, 38, 325-337.	0.9	0
130	Convective vaporization of a fuel droplet with thermal radiation absorption. Fuel, 2006, 85, 32-46.	3.4	121
131	Models for fuel droplet heating and evaporation: Comparative analysis. Fuel, 2006, 85, 1613-1630.	3.4	122
132	A numerical algorithm for kinetic modelling of evaporation processes. Journal of Computational Physics, 2006, 218, 635-653.	1.9	26
133	Advanced models of fuel droplet heating and evaporation. Progress in Energy and Combustion Science, 2006, 32, 162-214.	15.8	667
134	Models for droplet transient heating: Effects on droplet evaporation, ignition, and break-up. International Journal of Thermal Sciences, 2005, 44, 610-622.	2.6	94
135	Droplet vaporization model in the presence of thermal radiation. International Journal of Heat and Mass Transfer, 2005, 48, 1868-1873.	2.5	82
136	New approaches to numerical modelling of droplet transient heating and evaporation. International Journal of Heat and Mass Transfer, 2005, 48, 4215-4228.	2.5	77
137	Diesel autogignition at elevated in-cylinder pressueres. International Journal of Engine Research, 2004, 5, 365-374.	1.4	18
138	Radiative Heating of Semi-Transparent Diesel Fuel Droplets. Journal of Heat Transfer, 2004, 126, 105-109.	1.2	44
139	Evaporation of diesel fuel droplets: kinetic versus hydrodynamic models. International Journal of Heat and Mass Transfer, 2004, 47, 2541-2549.	2.5	109
140	Transient heating of diesel fuel droplets. International Journal of Heat and Mass Transfer, 2004, 47, 3327-3340.	2.5	95
141	Absorption of external thermal radiation in asymmetrically illuminated droplets. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 87, 119-135.	1.1	21
142	Computational Model of Spectral Radiation Characteristics of Diesel Fuel Droplets. Heat Transfer Research, 2004, 35, 52-58.	0.9	3
143	Spectral properties of diesel fuel droplets. Fuel, 2003, 82, 15-22.	3.4	57
144	Absorption of thermal radiation in a semi-transparent spherical droplet: a simplified model. International Journal of Heat and Fluid Flow, 2003, 24, 919-927.	1.1	57

#	Article	IF	CITATIONS
145	A simplified non-isothermal model for droplet heating and evaporation. International Communications in Heat and Mass Transfer, 2003, 30, 787-796.	2.9	58
146	The initial stage of fuel spray penetrationâ [~] †. Fuel, 2003, 82, 875-885.	3.4	51
147	A Parabolic Temperature Profile Model for Heating of Droplets. Journal of Heat Transfer, 2003, 125, 535-537.	1.2	58
148	Spray Penetration in a Turbulent Flow. Flow, Turbulence and Combustion, 2002, 68, 153-165.	1.4	20
149	Analytical and numerical modelling of convective and radiative heating of fuel droplets in diesel engines. , 2002, , .		6
150	Thermal ignition analysis of a monodisperse spray with radiation. Combustion and Flame, 2001, 124, 684-701.	2.8	71
151	Heating and evaporation of semi-transparent diesel fuel droplets in the presence of thermal radiation. Fuel, 2001, 80, 1535-1544.	3.4	78
152	A fuel spray induced vortex ring. Fuel, 2001, 80, 1871-1883.	3.4	17
153	A model for fuel spray penetration. Fuel, 2001, 80, 2171-2180.	3.4	100
154	A Transient Formulation of Newton's Cooling Law for Spherical Bodies. Journal of Heat Transfer, 2001, 123, 63-64.	1.2	26
155	Modelling of the gas to fuel droplets radiative exchange. Fuel, 2000, 79, 1843-1852.	3.4	14
156	A Detailed Modelling of the Spray Ignition Process in Diesel Engines. Combustion Science and Technology, 2000, 160, 317-344.	1.2	109
157	Fluorination of uranium dioxide particles: a review of physical and chemical properties of the compounds involved. Journal of Nuclear Materials, 1999, 275, 231-245.	1.3	9
158	The Shell autoignition model: applications to gasoline and diesel fuels. Fuel, 1999, 78, 389-401.	3.4	75
159	The shell autoignition model: a new mathematical formulation. Combustion and Flame, 1999, 117, 529-540.	2.8	48
160	Thermal radiation effect on thermal explosion in gas containing fuel droplets. Combustion Theory and Modelling, 1999, 3, 769-787.	1.0	50
161	Detailed Modelling of a Swirling Coal Flame. Combustion Science and Technology, 1997, 123, 1-22.	1.2	6
162	The analytical and numerical study of the fluorination of uranium dioxide particles. Journal of Nuclear Materials, 1997, 249, 207-222.	1.3	3

#	Article	IF	CITATIONS
163	The P-1 model for thermal radiation transfer: advantages and limitations. Fuel, 1996, 75, 289-294.	3.4	117
164	The effective-emissivity approximation for the thermal radiation transfer problem. Fuel, 1996, 75, 1646-1654.	3.4	10
165	Are relativistic effects significant for the analysis of whistler-mode waves in the earth's magnetosphere?. Geophysical Monograph Series, 1995, , 139-142.	0.1	Ο
166	Solutions of magnetohydrodynamic problems based on a conventional computational fluid dynamics code. International Journal for Numerical Methods in Fluids, 1995, 21, 433-442.	0.9	13
167	Three-dimensional modelling of processes in the fast-axial-flow CO2laser. Journal Physics D: Applied Physics, 1994, 27, 464-469.	1.3	17
168	Investigation of the active medium of a direct-current-excited fast-axial-flow CO2laser using a tunable diode laser. Journal Physics D: Applied Physics, 1994, 27, 962-969.	1.3	9
169	Electron diffusion in the fast-axial-flow CO2laser. Journal Physics D: Applied Physics, 1994, 27, 1107-1113.	1.3	2
170	The Boltzmann equation for the electron energy distribution function in CO2 laser discharges. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 185, 99-102.	0.9	4
171	A new approach to computational gas laser dynamics. Optics and Laser Technology, 1994, 26, 191-194.	2.2	2
172	An approximation for the electron energy distribution function in co2 laser discharges. Infrared Physics and Technology, 1994, 35, 733-738.	1.3	1
173	Periodic and quasiperiodic VLF emissions. Journal of Atmospheric and Solar-Terrestrial Physics, 1994, 56, 735-753.	0.9	57
174	Numerical analysis of the electron energy distribution function in a CO2 laser discharge. Infrared Physics, 1993, 34, 525-532.	0.5	10
175	Auroral hiss: a review. Planetary and Space Science, 1993, 41, 153-166.	0.9	72
176	A relativistic theory of plasma cut-offs. Astrophysics and Space Science, 1993, 203, 317-327.	0.5	1
177	The three temperature model for the fast-axial-flow CO2laser. Journal Physics D: Applied Physics, 1993, 26, 1872-1883.	1.3	41
178	Title is missing!. Plasma Physics and Controlled Fusion, 1993, 35, 117-126.	0.9	1
179	Relativistic and non-relativistic analysis of whistler-mode waves in a hot anisotropic plasma. Journal of Plasma Physics, 1992, 47, 163-174.	0.7	5
180	Analytical and numerical analysis of the generalized Shkarofsky function. Astrophysics and Space Science, 1992, 194, 173-196.	0.5	4

#	Article	IF	CITATIONS
181	Magnetospheric chorus emissions: A review. Planetary and Space Science, 1992, 40, 681-697.	0.9	203
182	Mid-latitude and plasmaspheric hiss: A review. Planetary and Space Science, 1992, 40, 1325-1338.	0.9	118
183	The propagation of damped or growing whistler-mode waves. Planetary and Space Science, 1992, 40, 985-988.	0.9	5
184	A relativistic theory of the R wave cut-off. Planetary and Space Science, 1992, 40, 433-437.	0.9	2
185	Group delay times of whistler-mode signals from VLF transmitters observed at Faraday, Antarctica. Journal of Atmospheric and Solar-Terrestrial Physics, 1992, 54, 99-107.	0.9	2
186	Oblique whistler-mode waves in the presence of electron beams. Planetary and Space Science, 1990, 38, 791-805.	0.9	4
187	Quasielectrostatic and electrostatic approximations for whistler mode waves in the magnetospheric plasma. Planetary and Space Science, 1990, 38, 311-318.	0.9	16
188	Storey angle for whistler-mode waves. Planetary and Space Science, 1990, 38, 327-331.	0.9	3
189	Quasilongitudinal approximation for whistler-mode waves in the magnetospheric plasma. Planetary and Space Science, 1990, 38, 1551-1553.	0.9	6
190	Relativistic effects on parallel whistler-mode propagation and instability. Astrophysics and Space Science, 1990, 166, 301-313.	0.5	5
191	On spin-modulation diagnostics of whistler-mode wave normal angles in the vicinity of the earth's magnetopause. Planetary and Space Science, 1990, 38, 333-339.	0.9	2
192	A new approximate solution of parallel whistler-mode dispersion equation. Astrophysics and Space Science, 1990, 172, 235-247.	0.5	1
193	Parallel whistler-mode propagation in a weakly relativistic plasma. Physica Scripta, 1989, 40, 114-116.	1.2	5
194	Improved quasilinear models of parallel whistler-mode instability. Planetary and Space Science, 1989, 37, 633-647.	0.9	8
195	Ray-tracing in an inhomogeneous plasma. Planetary and Space Science, 1989, 37, 739-747.	0.9	2
196	Marginal stability of oblique whistler-mode waves. Planetary and Space Science, 1989, 37, 223-227.	0.9	4
197	Approximate methods of the solution of parallel whistler-mode dispersion equation. Planetary and Space Science, 1989, 37, 311-314.	0.9	2
198	Effects of ions and finite electron density on quasi-electrostatic whistler-mode propagation. Astrophysics and Space Science, 1989, 158, 107-115.	0.5	5

4

#	Article	IF	CITATIONS
199	A physical model of quasi-electrostatic whistler-mode propagation. Astrophysics and Space Science, 1989, 161, 171-174.	0.5	2
200	Almost-parallel electromagnetic wave propagation at frequencies near the electron plasma frequency. Astrophysics and Space Science, 1988, 145, 377-380.	0.5	0
201	An extrapolation of the solution of parallel whistler-mode dispersion equation. Astrophysics and Space Science, 1988, 145, 163-166.	0.5	2
202	An improved quasielectrostatic approximation. Planetary and Space Science, 1988, 36, 123-124.	0.9	7
203	An improved quasilongitudinal approximation for whistler-mode waves. Planetary and Space Science, 1988, 36, 1111-1119.	0.9	14
204	Oblique whistler-mode growth and damping in a hot anisotropic plasma. Planetary and Space Science, 1988, 36, 663-667.	0.9	19
205	Some particular cases of oblique whistler-mode propagation in a hot anisotropic plasma. Journal of Plasma Physics, 1988, 40, 69-85.	0.7	4
206	An approximate theory of electromagnetic wave propagation in a weakly relativistic plasma. Journal of Plasma Physics, 1987, 37, 209-230.	0.7	30
207	Almost perpendicular electromagnetic wave transformation in a weakly relativistic inhomogeneous plasma. Journal of Plasma Physics, 1987, 37, 231-239.	0.7	0
208	A physical model of parallel whistler-mode propagation in a weakly relativistic plasma. Journal of Plasma Physics, 1987, 38, 301-307.	0.7	3
209	Quasilinear models of oblique whistler-mode instabilities. Planetary and Space Science, 1987, 35, 753-758.	0.9	7
210	The guidance of oblique whistler mode waves along magnetospheric field lines. Astrophysics and Space Science, 1987, 136, 221-224.	0.5	1
211	Electrostatic waves at frequencies close to the harmonics of electron gyrofrequency. Astrophysics and Space Science, 1987, 138, 99-103.	0.5	0
212	Whistler-mode polarization in a hot anisotropic plasma. Journal of Plasma Physics, 1985, 34, 213-226.	0.7	11
213	On whistler-mode trapping in the magnetospheric ducts. Journal of Plasma Physics, 1984, 31, 487-493.	0.7	4
214	Whistler-mode propagation at frequencies near the electron gyrofrequency. Journal of Plasma Physics, 1983, 29, 217-222.	0.7	7
215	Oblique whistler-mode propagation in a hot anisotropic plasma. Journal of Plasma Physics, 1982, 27, 199-204.	0.7	16

Fuel Droplet Heating and Evaporation: Analysis of Liquid and Gas Phase Models. , 0, , .

#	Article	IF	CITATIONS
217	Droplets heating and evaporation: an application to diesel-biodiesel fuel mixtures. , 0, , .		3
218	Models for automotive fuel droplets heating and evaporation. , 0, , .		3
219	A Model of Droplet Evaporation: New Mathematical Developments. Physics of Fluids, 0, , .	1.6	4