Hinanit Koltai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8530480/publications.pdf

Version: 2024-02-01

66234 79541 5,779 106 42 73 citations h-index g-index papers 108 108 108 5981 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cannabis Biomolecule Effects on Cancer Cells and Cancer Stem Cells: Cytotoxic, Anti-Proliferative, and Anti-Migratory Activities. Biomolecules, 2022, 12, 491.	1.8	14
2	Medical Cannabis Activity Against Inflammation: Active Compounds and Modes of Action. Frontiers in Pharmacology, 2022, 13, .	1.6	15
3	Plants with Phytomolecules Recognized by Receptors in the Central Nervous System. , 2021, , 269-291.		0
4	Specific Compositions of Cannabis sativa Compounds Have Cytotoxic Activity and Inhibit Motility and Colony Formation of Human Glioblastoma Cells In Vitro. Cancers, 2021, 13, 1720.	1.7	15
5	Strigolactones: Phytohormones with Promising Biomedical Applications. European Journal of Organic Chemistry, 2021, 2021, 4019-4026.	1.2	8
6	Effects of steam sterilization on reduction of fungal colony forming units, cannabinoids and terpene levels in medical cannabis inflorescences. Scientific Reports, 2021, 11, 13973.	1.6	3
7	First Steps to Domesticate Hairy Stork's-Bill (Erodium crassifolium) as a Commercial Pharmaceutical Crop for Arid Regions. Agronomy, 2021, 11, 1715.	1.3	0
8	Cannabis-Derived Compounds Cannabichromene and î"9-Tetrahydrocannabinol Interact and Exhibit Cytotoxic Activity against Urothelial Cell Carcinoma Correlated with Inhibition of Cell Migration and Cytoskeleton Organization. Molecules, 2021, 26, 465.	1.7	36
9	Cannabis compounds exhibit anti-inflammatory activity in vitro in COVID-19-related inflammation in lung epithelial cells and pro-inflammatory activity in macrophages. Scientific Reports, 2021, 11, 1462.	1.6	94
10	Chronological Review and Rational and Future Prospects of Cannabis-Based Drug Development. Molecules, 2020, 25, 4821.	1.7	20
11	Assessment of the Nutritional and Medicinal Potential of Tubers from Hairy Stork's-Bill (Erodium) Tj ETQq1 1 2020, 9, 1069.	0.784314 1.6	rgBT /Over <mark>lo</mark> 8
12	Cannabis Phytomolecule 'Entourage': From Domestication to Medical Use. Trends in Plant Science, 2020, 25, 976-984.	4.3	57
13	Synergistic cytotoxic activity of cannabinoids from <i>cannabis sativa</i> against cutaneous T-cell lymphoma (CTCL) <i>in-vitro</i> and <i>ex-vivo</i> . Oncotarget, 2020, 11, 1141-1156.	0.8	28
14	The "Entourage Effect― Terpenes Coupled with Cannabinoids for the Treatment of Mood Disorders and Anxiety Disorders. Current Neuropharmacology, 2020, 18, 87-96.	1.4	117
15	Terpenoids and Phytocannabinoids Co-Produced in Cannabis Sativa Strains Show Specific Interaction for Cell Cytotoxic Activity. Molecules, 2019, 24, 3031.	1.7	71
16	Promoting cannabis products to pharmaceutical drugs. European Journal of Pharmaceutical Sciences, 2019, 132, 118-120.	1.9	25
17	LED lighting affects the composition and biological activity of Cannabis sativa secondary metabolites. Industrial Crops and Products, 2019, 132, 177-185.	2.5	48
18	Variation in the compositions of cannabinoid and terpenoids in Cannabis sativa derived from inflorescence position along the stem and extraction methods. Industrial Crops and Products, 2018, 113, 376-382.	2.5	81

#	Article	IF	CITATIONS
19	Medical Cannabis for the Treatment of Inflammation. Natural Product Communications, 2018, 13, 1934578X1801300.	0.2	7
20	Review on Anti-Cancer Activity in Wild Plants of the Middle East. Current Medicinal Chemistry, 2018, 25, 4656-4670.	1.2	13
21	Glutathione/pH-responsive nanosponges enhance strigolactone delivery to prostate cancer cells. Oncotarget, 2018, 9, 35813-35829.	0.8	36
22	Structure-Activity Relationship of Cannabis Derived Compounds for the Treatment of Neuronal Activity-Related Diseases. Molecules, 2018, 23, 1526.	1.7	29
23	Identification of Synergistic Interaction Between Cannabis-Derived Compounds for Cytotoxic Activity in Colorectal Cancer Cell Lines and Colon Polyps That Induces Apoptosis-Related Cell Death and Distinct Gene Expression. Cannabis and Cannabinoid Research, 2018, 3, 120-135.	1.5	60
24	Calotropis procera, Apple of Sodom. Israel Journal of Plant Sciences, 2018, 65, 55-61.	0.3	5
25	Antiinflammatory Potential of Medicinal Plants: A Source for Therapeutic Secondary Metabolites. Advances in Agronomy, 2018, , 131-183.	2.4	23
26	Anti-Inflammatory Activity in Colon Models Is Derived from î"9-Tetrahydrocannabinolic Acid That Interacts with Additional Compounds in <i>Cannabis</i> Extracts. Cannabis and Cannabinoid Research, 2017, 2, 167-182.	1.5	68
27	Strigolactones: past, present and future. Planta, 2016, 243, 1309-1309.	1.6	6
28	Fineâ€ŧuning by strigolactones of root response to low phosphate. Journal of Integrative Plant Biology, 2016, 58, 203-212.	4.1	25
29	Expression of MAX2 under SCARECROW promoter enhances the strigolactone/MAX2 dependent response of Arabidopsis roots to low-phosphate conditions. Planta, 2016, 243, 1419-1427.	1.6	13
30	Transcriptome analysis of stress tolerance in entomopathogenic nematodes of the genus Steinernema. International Journal for Parasitology, 2016, 46, 83-95.	1.3	14
31	The role of pre-symbiotic auxin signaling in ectendomycorrhiza formation between the desert truffle Terfezia boudieri and Helianthemum sessiliflorum. Mycorrhiza, 2016, 26, 287-297.	1.3	9
32	Analogs of the novel phytohormone, strigolactone, trigger apoptosis and synergize with PARP inhibitors by inducing DNA damage and inhibiting DNA repair. Oncotarget, 2016, 7, 13984-14001.	0.8	30
33	Influx and Efflux of Strigolactones Are Actively Regulated and Involve the Cell-Trafficking System. Molecular Plant, 2015, 8, 1809-1812.	3.9	16
34	Plant derived substances with anti-cancer activity: from folklore to practice. Frontiers in Plant Science, 2015, 6, 799.	1.7	293
35	A humic substances product extracted from biochar reduces Arabidopsis root hair density and length under P-sufficient and P-starvation conditions. Plant and Soil, 2015, 395, 21-30.	1.8	39
36	Arabidopsis response to low-phosphate conditions includes active changes in actin filaments and PIN2 polarization and is dependent on strigolactone signalling. Journal of Experimental Botany, 2015, 66, 1499-1510.	2.4	42

#	Article	IF	Citations
37	Strigolactone analogs act as new anti-cancer agents in inhibition of breast cancer in xenograft model. Cancer Biology and Therapy, 2015, 16, 1682-1688.	1.5	33
38	Cellular events of strigolactone signalling and their crosstalk with auxin in roots: Fig. 1 Journal of Experimental Botany, 2015, 66, 4855-4861.	2.4	58
39	Attraction of entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis bacteriophora to the red palm weevil (Rhynchophorus ferrugineus). Biological Control, 2015, 83, 75-81.	1.4	19
40	Stereochemical Assignment of Strigolactone Analogues Confirms Their Selective Biological Activity. Journal of Natural Products, 2015, 78, 2624-2633.	1.5	24
41	Strigolactone signaling in root development and phosphate starvation. Plant Signaling and Behavior, 2015, 10, e1045174.	1.2	32
42	Abstract 1777: The characterization of the effects of the strigolactones on the heat shock response. Cancer Research, 2015, 75, 1777-1777.	0.4	2
43	Strigolactone Involvement in Root Development, Response to Abiotic Stress, and Interactions with the Biotic Soil Environment. Plant Physiology, 2014, 166, 560-569.	2.3	123
44	Strigolactones: Biosynthesis, Synthesis and Functions in Plant Growth and Stress Responses. , 2014, , 265-288.		6
45	Implications of non-specific strigolactone signaling in the rhizosphere. Plant Science, 2014, 225, 9-14.	1.7	28
46	Strigolactone analog <scp>GR</scp> 24 triggers changes in <scp>PIN</scp> 2 polarity, vesicle trafficking and actin filament architecture. New Phytologist, 2014, 202, 1184-1196.	3.5	64
47	Receptors, repressors, PINs: a playground for strigolactone signaling. Trends in Plant Science, 2014, 19, 727-733.	4.3	52
48	Strigolactones Involvement in Root Development and Communications. Soil Biology, 2014, , 203-219.	0.6	1
49	Strigolactone analogues induce apoptosis through activation of p38 and the stress response pathway in cancer cell lines and in conditionally reprogrammed primary prostate cancer cells Oncotarget, 2014, 5, 1683-1698.	0.8	59
50	Molecular characterisation of the recovery process in the entomopathogenic nematode Heterorhabditis bacteriophora. International Journal for Parasitology, 2013, 43, 843-852.	1.3	24
51	Distinct and conserved transcriptomic changes during nematodeâ€induced giant cell development in tomato compared with Arabidopsis: a functional role for gene repression. New Phytologist, 2013, 197, 1276-1290.	3.5	98
52	Diverse Roles of Strigolactones in Plant Development. Molecular Plant, 2013, 6, 18-28.	3.9	323
53	Structure–Function Relations of Strigolactone Analogs: Activity as Plant Hormones and Plant Interactions. Molecular Plant, 2013, 6, 141-152.	3.9	40
54	Strigolactone signaling in the endodermis is sufficient to restore root responses and involves <scp>SHORT HYPOCOTYL 2 (SHY2)</scp> activity. New Phytologist, 2013, 198, 866-874.	3.5	65

#	Article	IF	CITATIONS
55	Strigolactones and the Coordinated Development of Shoot and Root. Signaling and Communication in Plants, 2013, , 189-204.	0.5	15
56	Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions. Annals of Botany, 2013, 112, 409-415.	1.4	44
57	Unveiling Signaling Events in Root Responses to Strigolactone. Molecular Plant, 2013, 6, 589-591.	3.9	11
58	Strigolactones in Root Exudates as a Signal in Symbiotic and Parasitic Interactions. Signaling and Communication in Plants, 2012, , 49-73.	0.5	10
59	Strigolactones Are Involved in Root Response to Low Phosphate Conditions in Arabidopsis Â. Plant Physiology, 2012, 160, 1329-1341.	2.3	191
60	Strigolactones: a novel class of phytohormones that inhibit the growth and survival of breast cancer cells and breast cancer stem-like enriched mammosphere cells. Breast Cancer Research and Treatment, 2012, 134, 1041-1055.	1,1	50
61	Strigolactone Deficiency Confers Resistance in Tomato Line <i>SL-ORT1</i> to the Parasitic Weeds <i>Phelipanche</i> and <i>Orobanche</i> spp Phytopathology, 2011, 101, 213-222.	1.1	46
62	Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. Journal of Experimental Botany, 2011, 62, 2915-2924.	2.4	195
63	Light is a positive regulator of strigolactone levels in tomato roots. Journal of Plant Physiology, 2011, 168, 1993-1996.	1.6	46
64	Expressing yeast <i>SAMdc</i> gene confers broad changes in gene expression and alters fatty acid composition in tomato fruit. Physiologia Plantarum, 2011, 142, 211-223.	2.6	19
65	Cellular localization of <i>Peach latent mosaic viroid</i> in peach sections by liquid phase <i>in situ</i> RTâ€PCR. Plant Pathology, 2011, 60, 468-473.	1.2	6
66	Strigolactones are regulators of root development. New Phytologist, 2011, 190, 545-549.	3.5	199
67	Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta, 2011, 233, 209-216.	1.6	452
68	The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta, 2011, 234, 419-427.	1.6	103
69	Strigolactones as mediators of plant growth responses to environmental conditions. Plant Signaling and Behavior, 2011, 6, 37-41.	1.2	29
70	Strigolactones' ability to regulate root development may be executed by induction of the ethylene pathway. Plant Signaling and Behavior, 2011, 6, 1004-1005.	1,2	9
71	Strigolactones' Effect on Root Growth and Root-Hair Elongation May Be Mediated by Auxin-Efflux Carriers. Journal of Plant Growth Regulation, 2010, 29, 129-136.	2.8	166
72	PREFACE special volume devoted to the COST870 meeting â€~The Potential of Exploiting Mycorrhizal Associations in Semi-Arid Regions'. Symbiosis, 2010, 52, 51-53.	1,2	0

#	Article	IF	CITATIONS
73	Characterization of a novel tomato mutant resistant to the weedy parasites Orobanche and Phelipanche spp Euphytica, 2010, 171, 371-380.	0.6	47
74	Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> on tomato (<i>Solanum) Tj ETQqC</i>	00 r gB oT /O	verboack 10 Tf
75	A tomato strigolactone-impaired mutant displays aberrant shoot morphology and plant interactions. Journal of Experimental Botany, 2010, 61, 1739-1749.	2.4	134
76	Strigolactones are positive regulators of light-harvesting genes in tomato. Journal of Experimental Botany, 2010, 61, 3129-3136.	2.4	100
77	Metabolic networking in Brunfelsia calycina petals after flower opening. Journal of Experimental Botany, 2010, 61, 1393-1403.	2.4	29
78	Mycorrhiza in floriculture: difficulties and opportunities. Symbiosis, 2010, 52, 55-63.	1.2	16
79	Arbuscular Mycorrhizal Symbiosis Under Stress Conditions: Benefits and Costs. Cellular Origin and Life in Extreme Habitats, 2010, , 339-356.	0.3	5
80	Transcriptional profiling of Arabidopsis thaliana plants' response to low relative humidity suggests a shoot–root communication. Plant Science, 2009, 177, 450-459.	1.7	25
81	Effect of Arbuscular Mycorrhizal Symbiosis on Enhancement of Tolerance to Abiotic Stresses. Mycology, 2009, , .	0.5	1
82	Expression of different desiccation-tolerance related genes in various species of entomopathogenic nematodes. Molecular and Biochemical Parasitology, 2008, 158, 65-71.	0.5	22
83	Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction. Nucleic Acids Research, 2008, 36, 2395-2405.	6.5	68
84	Transcriptional Profiling of <i>high pigment-2dg </i> Tomato Mutant Links Early Fruit Plastid Biogenesis with Its Overproduction of Phytonutrients. Plant Physiology, 2007, 145, 389-401.	2.3	154
85	Utilizing microarray spot characteristics to improve cross-species hybridization results. Genomics, 2007, 90, 636-645.	1.3	9
86	Cross-species microarray hybridizations: a developing tool for studying species diversity. Trends in Genetics, 2007, 23, 200-207.	2.9	98
87	Expression of a plant expansin is involved in the establishment of root knot nematode parasitism in tomato. Planta, 2006, 224, 155-162.	1.6	70
88	Expression of endo-1,4- $\hat{1}^2$ -glucanase (cel1) in Arabidopsis thaliana is associated with plant growth, xylem development and cell wall thickening. Plant Cell Reports, 2006, 25, 1067-1074.	2.8	53
89	Derivation of species-specific hybridization-like knowledge out of cross-species hybridization results. BMC Genomics, 2006, 7, 110.	1.2	39
90	Stressed worms: Responding to the post-genomics era. Molecular and Biochemical Parasitology, 2005, 143, 1-5.	0.5	14

#	Article	IF	CITATIONS
91	A broad characterization of the transcriptional profile of the compatible tomato response to the plant parasitic root knot nematode Meloidogyne javanica. European Journal of Plant Pathology, 2005, 111, 181-192.	0.8	90
92	An LEA group 3 family member is involved in survival of C. elegansduring exposure to stress. FEBS Letters, 2004, 577, 21-26.	1.3	137
93	Agricultural Genomics: An Approach to Plant Protection. European Journal of Plant Pathology, 2003, 109, 101-108.	0.8	11
94	DIFFERENTIAL GENE EXPRESSION DURING DESICCATION STRESS IN THE INSECT-KILLING NEMATODE STEINERNEMA FELTIAE IS-6. Journal of Parasitology, 2003, 89, 761-766.	0.3	57
95	Recovery and sequence validation of the histological signal following in situ RT-PCR localization of plant gene transcripts. Plant Molecular Biology Reporter, 2002, 20, 391-397.	1.0	3
96	Root-Nematode Interactions., 2002,, 933-947.		1
97	Overlapping Plant Signal Transduction Pathways Induced by a Parasitic Nematode and a Rhizobial Endosymbiont. Molecular Plant-Microbe Interactions, 2001, 14, 1168-1177.	1.4	101
98	Isolation of a Novel Collagen Gene (MJ-COL-5) in Meloidogyne Javanica and Analysis of its Expression Pattern. Journal of Parasitology, 2001, 87, 801-807.	0.3	5
99	Alterations in the Levels of Glycogen and Glycogen Synthase Transcripts during Desiccation in the Insect-Killing Nematode Steinernema feltiae IS-6. Journal of Parasitology, 2001, 87, 725.	0.3	0
100	Alterations in the Levels of Glycogen and Glycogen Synthase Transcripts During Desiccation in the Insect-Killing Nematode Steinernema Feltiae IS-6. Journal of Parasitology, 2001, 87, 725-732.	0.3	33
101	New strategies for the control of plant-parasitic nematodes. Pest Management Science, 2000, 56, 983-988.	1.7	146
102	Epistatic repression of PHANTASTICA and class 1 KNOTTED genes is uncoupled in tomato. Plant Journal, 2000, 22, 455-459.	2.8	63
103	Plant Parasitic Nematodes: Habitats, Hormones, and Horizontally-Acquired Genes. Journal of Plant Growth Regulation, 2000, 19, 183-194.	2.8	83
104	High Throughput Cellular Localization of Specific Plant mRNAs by Liquid-Phase in Situ Reverse Transcription-Polymerase Chain Reaction of Tissue Sections. Plant Physiology, 2000, 123, 1203-1212.	2.3	73
105	The first isolated collagen gene of the root-knot nematode Meloidogyne javanica is developmentally regulated. Gene, 1997, 196, 191-199.	1.0	20
106	Regulated use of an alternative spliced leader exon in the plant parasitic nematode Meloidogyne javanica1Note: Nucleotide sequences reported in this paper have been deposited in Genbank with accession numbers U78985–U79007.1. Molecular and Biochemical Parasitology, 1997, 86, 107-110.	0.5	5