List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8530243/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phagocytic microglia and macrophages in brain injury and repair. CNS Neuroscience and Therapeutics, 2022, 28, 1279-1293.	1.9	38
2	α-synucleinopathy exerts sex-dimorphic effects on the multipurpose DNA repair/redox protein APE1 in mice and humans. Progress in Neurobiology, 2022, 216, 102307.	2.8	5
3	Interleukin-4 improves white matter integrity and functional recovery after murine traumatic brain injury via oligodendroglial PPARγ. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 511-529.	2.4	37
4	Microglial Responses to Brain Injury and Disease: Functional Diversity and New Opportunities. Translational Stroke Research, 2021, 12, 474-495.	2.3	36
5	Microglial/Macrophage polarization and function in brain injury and repair after stroke. CNS Neuroscience and Therapeutics, 2021, 27, 515-527.	1.9	91
6	Cardiac Arrest Induced by Asphyxia Versus Ventricular Fibrillation Elicits Comparable Early Changes in Cytokine Levels in the Rat Brain, Heart, and Serum. Journal of the American Heart Association, 2021, 10, e018657.	1.6	13
7	Intranasal delivery of interleukin-4 attenuates chronic cognitive deficits via beneficial microglial responses in experimental traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 2870-2886.	2.4	21
8	Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity, 2021, 54, 1527-1542.e8.	6.6	163
9	Heat Shock Protein 70 as a Sex-Skewed Regulator of α-Synucleinopathy. Neurotherapeutics, 2021, 18, 2541-2564.	2.1	5
10	Adiponectin ameliorates hypoperfusive cognitive deficits by boosting a neuroprotective microglial response. Progress in Neurobiology, 2021, 205, 102125.	2.8	20
11	TGFα preserves oligodendrocyte lineage cells and improves white matter integrity after cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 639-655.	2.4	67
12	RNA sequencing reveals novel macrophage transcriptome favoring neurovascular plasticity after ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 720-738.	2.4	33
13	lschemic preconditioning provides long-lasting neuroprotection against ischemic stroke: The role of Nrf2. Experimental Neurology, 2020, 325, 113142.	2.0	39
14	Functional diversities of myeloid cells in the central nervous system. CNS Neuroscience and Therapeutics, 2020, 26, 1205-1206.	1.9	2
15	IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32679-32690.	3.3	93
16	Long weekend sleep is linked to stronger academic performance in male but not female pharmacy students. American Journal of Physiology - Advances in Physiology Education, 2020, 44, 350-357.	0.8	3
17	Transcriptomic and functional studies reveal undermined chemotactic and angiostimulatory properties of aged microglia during stroke recovery. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, S81-S97.	2.4	29
18	Abstract 110: RNA Sequencing Reveals Novel Macrophage Transcriptome Favoring Neurovascular Plasticity After Ischemic Stroke. Stroke, 2020, 51, .	1.0	0

#	Article	IF	CITATIONS
19	Abstract 327: Asphyxial Cardiac Arrest Induces Dynamic Changes in Dopamine Neurotransmission and Linked Behavioral Deficits. Circulation, 2020, 142, .	1.6	Ο
20	Alpha-synuclein: prion or prion-like?. Acta Neuropathologica, 2019, 138, 509-514.	3.9	14
21	Cytotoxicity models of Huntington's disease and relevance of hormetic mechanisms: A critical assessment of experimental approaches and strategies. Pharmacological Research, 2019, 150, 104371.	3.1	10
22	The interleukin-4/PPARÎ ³ signaling axis promotes oligodendrocyte differentiation and remyelination af remyelination after brain injury. PLoS Biology, 2019, 17, e3000330.	2.6	95
23	Protease-independent action of tissue plasminogen activator in brain plasticity and neurological recovery after ischemic stroke. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9115-9124.	3.3	37
24	Astrocytes Do Not Forfeit Their Neuroprotective Roles After Surviving Intense Oxidative Stress. Frontiers in Molecular Neuroscience, 2019, 12, 87.	1.4	27
25	Intracerebroventricular Delivery of Recombinant NAMPT Deters Inflammation and Protects Against Cerebral Ischemia. Translational Stroke Research, 2019, 10, 719-728.	2.3	20
26	The center of olfactory bulbâ€seeded αâ€synucleinopathy is the limbic system and the ensuing pathology is higher in male than in female mice. Brain Pathology, 2019, 29, 741-770.	2.1	18
27	Transient selective brain cooling confers neurovascular and functional protection from acute to chronic stages of ischemia/reperfusion brain injury. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1215-1231.	2.4	45
28	Abstract 22: Apoptosis Signal-Regulating Kinase 1 (ASK1) is a Novel Master Molecular Switch Controlling Microglia/Macrophage Reactions That Impact Short- and Long-Term Stroke Outcomes. Stroke, 2019, 50, .	1.0	1
29	Abstract WMP77: Ischemic Preconditioning Improves Long-Term Outcomes and Preserves Blood-Brain Barrier After Ischemic Stroke via Oxidative Signaling and Nrf2 Activation. Stroke, 2019, 50, .	1.0	0
30	Procalcitonin as a Biomarker for Malignant Cerebral Edema in Massive Cerebral Infarction. Scientific Reports, 2018, 8, 993.	1.6	18
31	Critical appraisal of pathology transmission in the α-synuclein fibril model of Lewy body disorders. Experimental Neurology, 2018, 299, 172-196.	2.0	33
32	Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Progress in Neurobiology, 2018, 163-164, 27-58.	2.8	156
33	Evidence for cross-hemispheric preconditioning in experimental Parkinson's disease. Brain Structure and Function, 2018, 223, 1255-1273.	1.2	11
34	Oxidative stress and DNA damage after cerebral ischemia: Potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology, 2018, 134, 208-217.	2.0	202
35	Enhancing and Extending Biological Performance and Resilience. Dose-Response, 2018, 16, 155932581878450.	0.7	57
36	Diabetes Mellitus Impairs White Matter Repair and Long-Term Functional Deficits After Cerebral Ischemia. Stroke, 2018, 49, 2453-2463.	1.0	68

#	Article	IF	CITATIONS
37	Hormesis mediates dose-sensitive shifts in macrophage activation patterns. Pharmacological Research, 2018, 137, 236-249.	3.1	30
38	A new era for stroke therapy: Integrating neurovascular protection with optimal reperfusion. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 2073-2091.	2.4	124
39	Tissue plasminogen activator promotes white matter integrity and functional recovery in a murine model of traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9230-E9238.	3.3	54
40	Brain ischemic preconditioning protects against ischemic injury and preserves the blood-brain barrier via oxidative signaling and Nrf2 activation. Redox Biology, 2018, 17, 323-337.	3.9	50
41	Drug conjugates—an emerging approach to treat breast cancer. Pharmacology Research and Perspectives, 2018, 6, e00417.	1.1	31
42	Neurobiology of stroke: Research progress and perspectives. Progress in Neurobiology, 2018, 163-164, 1-4.	2.8	6
43	Promises and limitations of immune cell-based therapies in neurological disorders. Nature Reviews Neurology, 2018, 14, 559-568.	4.9	34
44	Conditioning Against the Pathology of Parkinson's disease. Conditioning Medicine, 2018, 1, 143-162.	1.3	6
45	Endothelium-targeted overexpression of heat shock protein 27 ameliorates blood–brain barrier disruption after ischemic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1243-E1252.	3.3	119
46	Ventricular fibrillation cardiac arrest produces a chronic striatal hyperdopaminergic state that is worsened by methylphenidate treatment. Journal of Neurochemistry, 2017, 142, 305-322.	2.1	6
47	Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke. Brain, 2017, 140, 1914-1931.	3.7	146
48	ST2/IL-33-Dependent Microglial Response Limits Acute Ischemic Brain Injury. Journal of Neuroscience, 2017, 37, 4692-4704.	1.7	169
49	<i>N</i> -Acetyl-l-Cysteine Protects Astrocytes against Proteotoxicity without Recourse to Glutathione. Molecular Pharmacology, 2017, 92, 564-575.	1.0	25
50	Fast free-of-acrylamide clearing tissue (FACT)—an optimized new protocol for rapid, high-resolution imaging of three-dimensional brain tissue. Scientific Reports, 2017, 7, 9895.	1.6	39
51	Implantation of Brain-Derived Extracellular Matrix Enhances Neurological Recovery after Traumatic Brain Injury. Cell Transplantation, 2017, 26, 1224-1234.	1.2	56
52	Stem cell therapies in age-related neurodegenerative diseases and stroke. Ageing Research Reviews, 2017, 34, 39-50.	5.0	46
53	Aging of cerebral white matter. Ageing Research Reviews, 2017, 34, 64-76.	5.0	191
54	The impact of cerebrovascular aging on vascular cognitive impairment and dementia. Ageing Research Reviews, 2017, 34, 15-29.	5.0	139

#	Article	IF	CITATIONS
55	Curcumin Protects against Ischemic Stroke by Titrating Microglia/Macrophage Polarization. Frontiers in Aging Neuroscience, 2017, 9, 233.	1.7	128
56	Preventive and Protective Roles of Dietary Nrf2 Activators Against Central Nervous System Diseases. CNS and Neurological Disorders - Drug Targets, 2017, 16, 326-338.	0.8	75
57	Abstract 49: Endothelial-targeted Overexpression of Heat Shock Protein 27 Ameliorates Rapid Blood Brain Barrier Impairment and Improves Long Term Outcomes After Ischemia and Reperfusion. Stroke, 2017, 48, .	1.0	Ο
58	Remote Ischemic Preconditioningâ€Mediated Neuroprotection against Stroke is Associated with Significant Alterations in Peripheral Immune Responses. CNS Neuroscience and Therapeutics, 2016, 22, 43-52.	1.9	86
59	Synergistic stress exacerbation in hippocampal neurons: Evidence favoring the dualâ€hit hypothesis of neurodegeneration. Hippocampus, 2016, 26, 980-994.	0.9	20
60	Translational Stroke Research on Blood-Brain Barrier Damage: Challenges, Perspectives, and Goals. Translational Stroke Research, 2016, 7, 89-92.	2.3	57
61	Rapid and sustained antidepressant properties of an NMDA antagonist/monoamine reuptake inhibitor identified via transporter-based virtual screening. Pharmacology Biochemistry and Behavior, 2016, 150-151, 22-30.	1.3	12
62	Neurotransmitter receptors on microglia. Stroke and Vascular Neurology, 2016, 1, 52-58.	1.5	116
63	The Molecular Chaperone Hsc70 Interacts with Tyrosine Hydroxylase to Regulate Enzyme Activity and Synaptic Vesicle Localization. Journal of Biological Chemistry, 2016, 291, 17510-17522.	1.6	21
64	Transmission of α-synucleinopathy from olfactory structures deep into the temporal lobe. Molecular Neurodegeneration, 2016, 11, 49.	4.4	56
65	APE1/Ref-1 facilitates recovery of gray and white matter and neurological function after mild stroke injury. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3558-67.	3.3	42
66	Astrocytes Surviving Severe Stress Can Still Protect Neighboring Neurons from Proteotoxic Injury. Molecular Neurobiology, 2016, 53, 4939-4960.	1.9	17
67	Investigation of the therapeutic potential of N-acetyl cysteine and the tools used to define nigrostriatal degeneration in vivo. Toxicology and Applied Pharmacology, 2016, 296, 19-30.	1.3	12
68	Rapid endothelial cytoskeletal reorganization enables early blood–brain barrier disruption and long-term ischaemic reperfusion brain injury. Nature Communications, 2016, 7, 10523.	5.8	309
69	Omega-3 polyunsaturated fatty acids mitigate blood–brain barrier disruption after hypoxic–ischemic brain injury. Neurobiology of Disease, 2016, 91, 37-46.	2.1	70
70	Interleukin-4 Is Essential for Microglia/Macrophage M2 Polarization and Long-Term Recovery After Cerebral Ischemia. Stroke, 2016, 47, 498-504.	1.0	300
71	Abstract 147: Aberrant Activation of ASK1 Mediates Proinflammatory and Neurotoxic Microglial Responses After Cerebral Ischemia/Reperfusion. Stroke, 2016, 47,	1.0	0
72	Splenic Responses in Ischemic Stroke: New Insights into Stroke Pathology. CNS Neuroscience and Therapeutics, 2015, 21, 320-326.	1.9	47

#	Article	IF	CITATIONS
73	Teaching Pharmacology Graduate Students how to Write an NIH Grant Application. American Journal of Pharmaceutical Education, 2015, 79, 138.	0.7	6
74	Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury. Scientific Reports, 2015, 5, 9621.	1.6	45
75	Apurinic/Apyrimidinic Endonuclease 1 Upregulation Reduces Oxidative DNA Damage and Protects Hippocampal Neurons from Ischemic Injury. Antioxidants and Redox Signaling, 2015, 22, 135-148.	2.5	31
76	Ethyl Pyruvate Protects against Blood–Brain Barrier Damage and Improves Longâ€ŧerm Neurological Outcomes in a Rat Model of Traumatic Brain Injury. CNS Neuroscience and Therapeutics, 2015, 21, 374-384.	1.9	45
77	Heat shock protein responses to aging and proteotoxicity in the olfactory bulb. Journal of Neurochemistry, 2015, 133, 780-794.	2.1	16
78	HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2853-2858.	3.3	303
79	Heat shock protein defenses in the neocortex and allocortex of the telencephalon. Neurobiology of Aging, 2015, 36, 1924-1937.	1.5	15
80	Dietary supplementation with omega-3 polyunsaturated fatty acids robustly promotes neurovascular restorative dynamics and improves neurological functions after stroke. Experimental Neurology, 2015, 272, 170-180.	2.0	44
81	Demyelination as a rational therapeutic target for ischemic or traumatic brain injury. Experimental Neurology, 2015, 272, 17-25.	2.0	118
82	White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke. Experimental Neurology, 2015, 272, 109-119.	2.0	150
83	<i>n</i> -3 Polyunsaturated Fatty Acids Reduce Neonatal Hypoxic/Ischemic Brain Injury by Promoting Phosphatidylserine Formation and Akt Signaling. Stroke, 2015, 46, 2943-2950.	1.0	58
84	Perspective for Stroke and Brain Injury Research: Mechanisms and Potential Therapeutic Targets. CNS Neuroscience and Therapeutics, 2015, 21, 301-303.	1.9	16
85	Rosiglitazone Promotes White Matter Integrity and Long-Term Functional Recovery After Focal Cerebral Ischemia. Stroke, 2015, 46, 2628-2636.	1.0	135
86	Microglial and macrophage polarization—new prospects for brain repair. Nature Reviews Neurology, 2015, 11, 56-64.	4.9	1,093
87	The Role of Nicotinamide Phosphoribosyltransferase in Cerebral Ischemia. Current Topics in Medicinal Chemistry, 2015, 15, 2211-2221.	1.0	17
88	Regulation of Neuroinflammation through Programed Death-1/Programed Death Ligand Signaling in Neurological Disorders. Frontiers in Cellular Neuroscience, 2014, 8, 271.	1.8	38
89	Neuronal NAMPT is Released after Cerebral Ischemia and Protects against White Matter Injury. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1613-1621.	2.4	52
90	Adaptation and Sensitization to Proteotoxic Stress. Dose-Response, 2014, 12, dose-response.1.	0.7	14

#	Article	IF	CITATIONS
91	N-Acetyl cysteine prevents synergistic, severe toxicity from two hits of oxidative stress. Neuroscience Letters, 2014, 560, 71-76.	1.0	24
92	Omega-3 Fatty Acids Protect the Brain against Ischemic Injury by Activating Nrf2 and Upregulating Heme Oxygenase 1. Journal of Neuroscience, 2014, 34, 1903-1915.	1.7	156
93	Omega-3 polyunsaturated fatty acids enhance cerebral angiogenesis and provide long-term protection after stroke. Neurobiology of Disease, 2014, 68, 91-103.	2.1	78
94	Preconditioning provides neuroprotection in models of CNS disease: Paradigms and clinical significance. Progress in Neurobiology, 2014, 114, 58-83.	2.8	164
95	Molecular dialogs between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair. Progress in Neurobiology, 2014, 115, 6-24.	2.8	168
96	Heat shock proteins in neurodegenerative disorders and aging. Journal of Cell Communication and Signaling, 2014, 8, 293-310.	1.8	145
97	Impact of aging on heat shock protein expression in the substantia nigra and striatum of the female rat. Cell and Tissue Research, 2014, 357, 43-54.	1.5	25
98	From apoplexy to stroke: Historical perspectives and new research frontiers. Progress in Neurobiology, 2014, 115, 1-5.	2.8	18
99	Neurobiology of microglial action in CNS injuries: Receptor-mediated signaling mechanisms and functional roles. Progress in Neurobiology, 2014, 119-120, 60-84.	2.8	108
100	Viability Assays for Cells in Culture. Journal of Visualized Experiments, 2014, , e50645.	0.2	34
101	n-3 PUFA supplementation benefits microglial responses to myelin pathology. Scientific Reports, 2014, 4, 7458.	1.6	117
102	The Critical Roles of Immune Cells in Acute Brain Injuries. , 2014, , 9-25.		4
103	The Interplay Between White Matter, Mitochondria, and Neuroprotection. , 2014, , 539-554.		0
104	Abstract 8: APE1 Upregulation Reduces Oxidative DNA Damage and Protects Hippocampal Neurons from Ischemic Injury. Stroke, 2014, 45, .	1.0	0
105	Astrocyte plasticity revealed by adaptations to severe proteotoxic stress. Cell and Tissue Research, 2013, 352, 427-443.	1.5	22
106	Microglia/Macrophage Polarization Dynamics in White Matter after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1864-1874.	2.4	387
107	Omega-3 Polyunsaturated Fatty Acid Supplementation Improves Neurologic Recovery and Attenuates White Matter Injury after Experimental Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1474-1484.	2.4	94
108	ATP Induces Mild Hypothermia in Rats but has a Strikingly Detrimental Impact on Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, e1-e10.	2.4	24

#	Article	IF	CITATIONS
109	Scriptaid, a Novel Histone Deacetylase Inhibitor, Protects Against Traumatic Brain Injury via Modulation of PTEN and AKT Pathway. Neurotherapeutics, 2013, 10, 124-142.	2.1	88
110	N-Acetyl cysteine blunts proteotoxicity in a heat shock protein-dependent manner. Neuroscience, 2013, 255, 19-32.	1.1	13
111	Adoptive Regulatory T-Cell Therapy Preserves Systemic Immune Homeostasis After Cerebral Ischemia. Stroke, 2013, 44, 3509-3515.	1.0	82
112	The Dynamics of the Mitochondrial Organelle as a Potential Therapeutic Target. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 22-32.	2.4	97
113	Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Progress in Neurobiology, 2013, 100, 30-47.	2.8	491
114	Peroxiredoxin 2 Battles Poly(ADP-Ribose) Polymerase 1- and p53-Dependent Prodeath Pathways After Ischemic Injury. Stroke, 2013, 44, 1124-1134.	1.0	27
115	HSP27 Protects the Blood-Brain Barrier Against Ischemia-Induced Loss of Integrity. CNS and Neurological Disorders - Drug Targets, 2013, 12, 325-337.	0.8	29
116	Editorial (Hot Topic: Neuroprotection Against Stroke and CNS Injury: New Mechanisms, Targets, and) Tj ETQq0 C	0 rgBT /O	verlock 10 Tf
117	Neurorestorative Effect of Urinary Bladder Matrix-Mediated Neural Stem Cell Transplantation Following Traumatic Brain Injury in Rats. CNS and Neurological Disorders - Drug Targets, 2013, 12, 413-425.	0.8	28
118	Neocortex and Allocortex Respond Differentially to Cellular Stress In Vitro and Aging In Vivo. PLoS ONE, 2013, 8, e58596.	1.1	30
119	Transgenic Overproduction of Omega-3 Polyunsaturated Fatty Acids Provides Neuroprotection and Enhances Endogenous Neurogenesis After Stroke. Current Molecular Medicine, 2013, 13, 1465-1473.	0.6	30
120	Ischemic Post-Conditioning Partially Reverses Cell Cycle Reactivity Following Ischemia/Reperfusion Injury: A Genome-Wide Survey. CNS and Neurological Disorders - Drug Targets, 2013, 12, 350-359.	0.8	5
121	Drug-Induced Hypothermia in Stroke Models: Does it Always Protect?. CNS and Neurological Disorders - Drug Targets, 2013, 12, 371-380.	0.8	37
122	How Do Subcellular Organelles Participate in Preconditioning-Conferred Neuroprotection?. , 2013, , 387-427.		0
123	Delivery of Neurotherapeutics Across the Blood Brain Barrier in Stroke. Current Pharmaceutical Design, 2012, 18, 3704-3720.	0.9	10
124	Microglia/Macrophage Polarization Dynamics Reveal Novel Mechanism of Injury Expansion After Focal Cerebral Ischemia. Stroke, 2012, 43, 3063-3070.	1.0	1,239
125	Physical Activityâ€Associated Gene Expression Signature in Nonhuman Primate Motor Cortex. Obesity, 2012, 20, 692-698.	1.5	3
126	Physical activity is linked to ceruloplasmin in the striatum of intact but not MPTP-treated primates. Cell and Tissue Research, 2012, 350, 401-407.	1.5	8

#	Article	IF	CITATIONS
127	Gene transcripts associated with BMI in the motor cortex and caudate nucleus of calorie restricted rhesus monkeys. Genomics, 2012, 99, 144-151.	1.3	8
128	Pharmacological Induction of Heme Oxygenase-1 by a Triterpenoid Protects Neurons Against Ischemic Injury. Stroke, 2012, 43, 1390-1397.	1.0	80
129	Rescue from a two hit, high-throughput model of neurodegeneration with N-acetyl cysteine. Neurochemistry International, 2012, 61, 356-368.	1.9	19
130	Mitochondrial biogenesis contributes to ischemic neuroprotection afforded by <scp>LPS</scp> preâ€conditioning. Journal of Neurochemistry, 2012, 123, 125-137.	2.1	39
131	Innervation of ventricular and periventricular brain compartments. Brain Research, 2012, 1463, 51-62.	1.1	8
132	Assaying multiple biochemical variables from the same tissue sample. Journal of Neuroscience Methods, 2010, 191, 234-238.	1.3	11
133	The molecular chaperone Hsc70 interacts with the vesicular monoamine transporterâ€2. Journal of Neurochemistry, 2009, 110, 581-594.	2.1	16
134	Triggering endogenous neuroprotective processes through exercise in models of dopamine deficiency. Parkinsonism and Related Disorders, 2009, 15, S42-S45.	1.1	94
135	Physical and Functional Interaction between the Dopamine Transporter and the Synaptic Vesicle Protein Synaptogyrin-3. Journal of Neuroscience, 2009, 29, 4592-4604.	1.7	115
136	Rapid activation of ERK by 6â€hydroxydopamine promotes survival of dopaminergic cells. Journal of Neuroscience Research, 2008, 86, 108-117.	1.3	54
137	Activation of the extracellular signalâ€regulated kinases 1 and 2 by glial cell lineâ€derived neurotrophic factor and its relation to neuroprotection in a mouse model of Parkinson's disease. Journal of Neuroscience Research, 2008, 86, 2039-2049.	1.3	28
138	Adaptation to chronic MG132 reduces oxidative toxicity by a CuZnSODâ€dependent mechanism. Journal of Neurochemistry, 2008, 106, 860-874.	2.1	22
139	Wild-type LRRK2 but not its mutant attenuates stress-induced cell death via ERK pathway. Neurobiology of Disease, 2008, 32, 116-124.	2.1	88
140	Impact of exercise on caudate and putamen in a non-human primate model of Parkinson's disease. NeuroImage, 2008, 41, T129.	2.1	1
141	Endogenous Defenses that Protect Dopamine Neurons. , 2008, , 173-194.		0
142	Effect of sublethal 6-hydroxydopamine on the response to subsequent oxidative stress in dopaminergic cells: evidence for preconditioning. Journal of Neurochemistry, 2006, 99, 1151-1163.	2.1	33
143	Organization of suprachiasmatic nucleus projections in Syrian hamsters (Mesocricetus auratus): An anterograde and retrograde analysis. Journal of Comparative Neurology, 2004, 468, 361-379.	0.9	131
144	Suprachiasmatic nucleus organization. Cell and Tissue Research, 2002, 309, 89-98.	1.5	447

#	Article	IF	CITATIONS
145	The suprachiasmatic nucleus projects to posterior hypothalamic arousal systems. NeuroReport, 2001, 12, 435-440.	0.6	283
146	Topographic organization of suprachiasmatic nucleus projection neurons. Journal of Comparative Neurology, 2001, 433, 312-334.	0.9	262
147	Suprachiasmatic Nucleus. Handbook of Behavioral Neurobiology, 2001, , 141-179.	0.3	24
148	Suprachiasmatic pacemaker organization analyzed by viral transynaptic transport. Brain Research, 1999, 819, 23-32.	1.1	147
149	Identification of retinal ganglion cells projecting to the lateral hypothalamic area of the rat. Brain Research, 1997, 770, 105-114.	1.1	45
150	Calbindin-D28K cells in the hamster SCN express light-induced Fos. NeuroReport, 1996, 7, 1224.	0.6	127
151	Detection and transduction of daylength in birds. Psychoneuroendocrinology, 1994, 19, 641-656.	1.3	51
152	Mechanistic Research for the Student or Educator (Part I of II). Frontiers in Pharmacology, 0, 13, .	1.6	0
153	Mechanistic Research for the Student or Educator (Part II of II). Frontiers in Pharmacology, 0, 13, .	1.6	0