Bruce C Trapnell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8530193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A murine model of hereditary pulmonary alveolar proteinosis caused by homozygous <i>Csf2ra</i> gene disruption. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L438-L448.	2.9	11
2	Autoimmune Pulmonary Alveolar Proteinosis. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1016-1035.	5.6	28
3	Identification of Distinct Inflammatory Programs and Biomarkers in Systemic Juvenile Idiopathic Arthritis and Related Lung Disease by Serum Proteome Analysis. Arthritis and Rheumatology, 2022, 74, 1271-1283.	5.6	24
4	Signal Transducer and Activator of Transcription 5B Deficiency–associated Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1245-1250.	5.6	8
5	Efficacy and safety of mavrilimumab in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Annals of the Rheumatic Diseases, 2022, 81, 653-661.	0.9	49
6	Two-year follow-up of exposure, engineering controls, respiratory protection and respiratory health among workers at an indium-tin oxide (ITO) production and reclamation facility. Occupational and Environmental Medicine, 2022, 79, 550-556.	2.8	2
7	Mavrilimumab in patients with severe COVID-19 pneumonia and systemic hyperinflammation (MASH-COVID): an investigator initiated, multicentre, double-blind, randomised, placebo-controlled trial. Lancet Rheumatology, The, 2021, 3, e410-e418.	3.9	57
8	Effective hematopoietic stem cell-based gene therapy in a murine model of hereditary pulmonary alveolar proteinosis. Haematologica, 2020, 105, 1147-1157.	3.5	7
9	Increased Pulmonary GM-CSF Causes Alveolar Macrophage Accumulation. Mechanistic Implications for Desquamative Interstitial Pneumonitis. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 87-94.	2.9	21
10	Inhaled Molgramostim Therapy in Autoimmune Pulmonary Alveolar Proteinosis. New England Journal of Medicine, 2020, 383, 1635-1644.	27.0	61
11	GM-CSF blockade with mavrilimumab in severe COVID-19 pneumonia and systemic hyperinflammation: a single-centre, prospective cohort study. Lancet Rheumatology, The, 2020, 2, e465-e473.	3.9	173
12	A novel approach to conducting clinical trials in the community setting: utilizing patient-driven platforms and social media to drive web-based patient recruitment. BMC Medical Research Methodology, 2020, 20, 58.	3.1	20
13	Hospitalization rates among patients with cystic fibrosis using pancreatic enzyme replacement therapy. Chronic Respiratory Disease, 2020, 17, 147997311990061.	2.4	9
14	Systemic Juvenile Idiopathic Arthritis–Associated Lung Disease: Characterization and Risk Factors. Arthritis and Rheumatology, 2019, 71, 1943-1954.	5.6	124
15	Complete Tracheal Ring Deformity. A Translational Genomics Approach to Pathogenesis. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1267-1281.	5.6	25
16	Long-Term Safety and Efficacy of Gene-Pulmonary Macrophage Transplantation Therapy of PAP in Csf2raâ^'/â^' Mice. Molecular Therapy, 2019, 27, 1597-1611.	8.2	21
17	The Alveolar Lipidome in Pulmonary Alveolar Proteinosis. A New Target for Therapeutic Development?. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 800-802.	5.6	4
18	Pulmonary alveolar proteinosis. Nature Reviews Disease Primers, 2019, 5, 16.	30.5	244

#	Article	IF	CITATIONS
19	Pulmonary alveolar proteinosis: An autoimmune disease lacking an HLA association. PLoS ONE, 2019, 14, e0213179.	2.5	11
20	Blood Testing for Differential Diagnosis of Pulmonary Alveolar Proteinosis Syndrome. Chest, 2019, 155, 450-452.	0.8	13
21	Pulmonary Transplantation of Human Induced Pluripotent Stem Cell–derived Macrophages Ameliorates Pulmonary Alveolar Proteinosis. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 350-360.	5.6	57
22	IFN-β Improves Sepsis-related Alveolar Macrophage Dysfunction and Postseptic Acute Respiratory Distress Syndrome–related Mortality. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 45-55.	2.9	32
23	Clinical Significance of Interferon-Î ³ Neutralizing Autoantibodies Against Disseminated Nontuberculous Mycobacterial Disease. Clinical Infectious Diseases, 2018, 66, 1239-1245.	5.8	64
24	Personalised CFTR pharmacotherapeutic response testing and therapy of cystic fibrosis. European Respiratory Journal, 2018, 51, 1702457.	6.7	31
25	Blood testing in the diagnosis of pulmonary alveolar proteinosis. Lancet Respiratory Medicine,the, 2018, 6, e54.	10.7	5
26	Prevalence and healthcare burden of pulmonary alveolar proteinosis. Orphanet Journal of Rare Diseases, 2018, 13, 129.	2.7	54
27	Statin as a novel pharmacotherapy of pulmonary alveolar proteinosis. Nature Communications, 2018, 9, 3127.	12.8	60
28	iPSC-Derived Macrophages Effectively Treat Pulmonary Alveolar Proteinosis in Csf2rb-Deficient Mice. Stem Cell Reports, 2018, 11, 696-710.	4.8	40
29	Impaired granulocyte-macrophage colony-stimulating factor bioactivity accelerates surgical recurrence in ileal Crohn's disease. World Journal of Gastroenterology, 2018, 24, 623-630.	3.3	14
30	Prediction of complicated disease course for children newly diagnosed with Crohn's disease: a multicentre inception cohort study. Lancet, The, 2017, 389, 1710-1718.	13.7	482
31	Does Granulocyte–Macrophage Colony-Stimulating Factor Coordinate a Hepatopulmonary Axis of Lipid Metabolism?. American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 383-385.	2.9	1
32	Targeting cholesterol homeostasis in lung diseases. Scientific Reports, 2017, 7, 10211.	3.3	62
33	Function and Safety of Lentivirus-Mediated Gene Transfer for <i>CSF2RA</i> -Deficiency. Human Gene Therapy Methods, 2017, 28, 318-329.	2.1	16
34	Epidemiology of Rare Lung Diseases: The Challenges and Opportunities to Improve Research and Knowledge. Advances in Experimental Medicine and Biology, 2017, 1031, 419-442.	1.6	10
35	A Global Survey on Whole Lung Lavage in Pulmonary Alveolar Proteinosis. Chest, 2016, 150, 251-253.	0.8	20
36	Respirable indium exposures, plasma indium, and respiratory health among indiumâ€ŧin oxide (ITO) workers. American Journal of Industrial Medicine, 2016, 59, 522-531.	2.1	43

#	Article	IF	CITATIONS
37	Whole lung lavage therapy for pulmonary alveolar proteinosis: a global survey of current practices and procedures. Orphanet Journal of Rare Diseases, 2016, 11, 115.	2.7	100
38	Recombinant Adeno-Associated Virus Vector Genomes Take the Form of Long-Lived, Transcriptionally Competent Episomes in Human Muscle. Human Gene Therapy, 2016, 27, 32-42.	2.7	18
39	Murine iPSC-Derived Macrophages as a Tool for Disease Modeling of Hereditary Pulmonary Alveolar Proteinosis due to Csf2rb Deficiency. Stem Cell Reports, 2016, 7, 292-305.	4.8	23
40	Pulmonary Alveolar Proteinosis Syndrome. Clinics in Chest Medicine, 2016, 37, 431-440.	2.1	113
41	A lymphocyte-mediated cause of secondary PAP. Blood, 2015, 125, 215-216.	1.4	1
42	Diffuse Lung Disease in Biopsied Children 2 to 18 Years of Age. Application of the chILD Classification Scheme. Annals of the American Thoracic Society, 2015, 12, 1498-1505.	3.2	74
43	A standardized blood test for the routine clinical diagnosis of impaired GM-CSF signaling using flow cytometry. Journal of Immunological Methods, 2014, 413, 1-11.	1.4	12
44	Pulmonary macrophage transplantation therapy. Nature, 2014, 514, 450-454.	27.8	249
45	Standardized serum GM-CSF autoantibody testing for the routine clinical diagnosis of autoimmune pulmonary alveolar proteinosis. Journal of Immunological Methods, 2014, 402, 57-70.	1.4	80
46	Assessment and management of pulmonary alveolar proteinosis in a reference center. Orphanet Journal of Rare Diseases, 2013, 8, 40.	2.7	49
47	Fosfomycin/Tobramycin for Inhalation in Patients with Cystic Fibrosis with <i>Pseudomonas</i> Airway Infection. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 171-178.	5.6	106
48	Indium Lung Disease. Chest, 2012, 141, 1512-1521.	0.8	100
49	Efficacy and safety of PANCREAZE® for treatment of exocrine pancreatic insufficiency due to cystic fibrosis. Journal of Cystic Fibrosis, 2011, 10, 350-356.	0.7	26
50	Relationship Between Diffuse Pulmonary Fibrosis, Alveolar Proteinosis, and Granulocyte-Macrophage Colony Stimulating Factor Autoantibodies. Respiratory Care, 2011, 56, 1608-1610.	1.6	11
51	Inhaled Granulocyte/Macrophage–Colony Stimulating Factor as Therapy for Pulmonary Alveolar Proteinosis. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 1345-1354.	5.6	184
52	Hereditary Pulmonary Alveolar Proteinosis. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 1292-1304.	5.6	151
53	Patient-derived Granulocyte/Macrophage Colony–Stimulating Factor Autoantibodies Reproduce Pulmonary Alveolar Proteinosis in Nonhuman Primates. American Journal of Respiratory and Critical Care Medicine, 2010, 182, 49-61.	5.6	85
54	Human GM-CSF Autoantibodies and Reproduction of Pulmonary Alveolar Proteinosis. New England Journal of Medicine, 2009, 361, 2679-2681.	27.0	134

#	Article	IF	CITATIONS
55	Pulmonary alveolar proteinosis, a primary immunodeficiency of impaired GM-CSF stimulation of macrophages. Current Opinion in Immunology, 2009, 21, 514-521.	5.5	142
56	Efficacy and safety of Creon® 24,000 in subjects with exocrine pancreatic insufficiency due to cystic fibrosis. Journal of Cystic Fibrosis, 2009, 8, 370-377.	0.7	66
57	Quantitative Analysis of Longitudinal Response to Aerosolized Granulocyte-Macrophage Colony-Stimulating Factor in Two Adolescents With Autoimmune Pulmonary Alveolar Proteinosis. Chest, 2009, 135, 842-848.	0.8	36
58	Granulocyte/macrophage–colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy subjects. Blood, 2009, 113, 2547-2556.	1.4	131
59	Comparative Study of High-Resolution CT Findings Between Autoimmune and Secondary Pulmonary Alveolar Proteinosis. Chest, 2009, 136, 1348-1355.	0.8	82
60	$\hat{I}\pm 1$ -Antitrypsin Augmentation Therapy for PI*MZ Heterozygotes. Chest, 2008, 134, 831-834.	0.8	50
61	Familial pulmonary alveolar proteinosis caused by mutations in <i>CSF2RA </i> . Journal of Experimental Medicine, 2008, 205, 2703-2710.	8.5	275
62	Characteristics of a Large Cohort of Patients with Autoimmune Pulmonary Alveolar Proteinosis in Japan. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 752-762.	5.6	391
63	Gene Therapy of βc-Deficient Pulmonary Alveolar Proteinosis (βc-PAP): Studies in a Murine in vivo Model. Molecular Therapy, 2008, 16, 757-764.	8.2	33
64	GM-CSF Autoantibodies and Neutrophil Dysfunction in Pulmonary Alveolar Proteinosis. New England Journal of Medicine, 2007, 356, 567-579.	27.0	258
65	Diffuse Lung Disease in Young Children. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 1120-1128.	5.6	443
66	Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to control Mycobacterium tuberculosis infection. Journal of Leukocyte Biology, 2005, 77, 914-922.	3.3	174
67	Pulmonary Alveolar Proteinosis. New England Journal of Medicine, 2003, 349, 2527-2539.	27.0	713
68	High-affinity autoantibodies specifically eliminate granulocyte-macrophage colony-stimulating factor activity in the lungs of patients with idiopathic pulmonary alveolar proteinosis. Blood, 2003, 103, 1089-1098.	1.4	201
69	PU.1 regulation of human alveolar macrophage differentiation requires granulocyte-macrophage colony-stimulating factor. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L1132-L1136.	2.9	113
70	Endocytic Internalization of Adenovirus, Nonspecific Phagocytosis, and Cytoskeletal Organization Are Coordinately Regulated in Alveolar Macrophages by GM-CSF and PU.1. Journal of Immunology, 2002, 169, 6332-6342.	0.8	59
71	GM-CSF, via PU.1, regulates alveolar macrophage Fcl̂³R-mediated phagocytosis and the IL-18/IFN-l̂³â€"mediated molecular connection between innate and adaptive immunity in the lung. Blood, 2002, 100, 4193-4200.	1.4	122
72	GM-CSF Regulates Pulmonary Surfactant Homeostasis and Alveolar Macrophage-Mediated Innate Host Defense. Annual Review of Physiology, 2002, 64, 775-802.	13.1	306

#	Article	IF	CITATIONS
73	Granulocyte Macrophage-Colony Stimulating Factor Augmentation Therapy in Sepsis. American Journal of Respiratory and Critical Care Medicine, 2002, 166, 129-130.	5.6	9
74	GM-CSF Regulates Alveolar Macrophage Differentiation and Innate Immunity in the Lung through PU.1. Immunity, 2001, 15, 557-567.	14.3	528
75	Alveolar macrophage deficiency in osteopetrotic mice deficient in macrophage colony-stimulating factor is spontaneously corrected with age and associated with matrix metalloproteinase expression and emphysema. Blood, 2001, 98, 2845-2852.	1.4	71
76	Efficient in vivo catheter-based pericardial gene transfer mediated by adenoviral vectors. Clinical Cardiology, 1999, 22, 23-29.	1.8	73