Tom J Millar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/85300/publications.pdf

Version: 2024-02-01

244 papers

11,750 citations

28274 55 h-index 101 g-index

252 all docs

252 docs citations

times ranked

252

5485 citing authors

#	Article	IF	CITATIONS
1	The UMIST database for astrochemistry 2012. Astronomy and Astrophysics, 2013, 550, A36.	5.1	714
2	TFOS DEWS II Tear Film Report. Ocular Surface, 2017, 15, 366-403.	4.4	610
3	The UMIST database for astrochemistry 2006. Astronomy and Astrophysics, 2007, 466, 1197-1204.	5.1	524
4	Deuterium fractionation in dense interstellar clouds. Astrophysical Journal, 1989, 340, 906.	4.5	360
5	On the molecular complexity of the hot cores in Orion A - Grain surface chemistry as 'The last refuge of the scoundrel'. Astrophysical Journal, 1992, 399, L71.	4.5	358
6	The UMIST Database for Astrochemistry 1995. Astronomy and Astrophysics, 1997, 121, 139-185.	2.1	355
7	The UMIST database for astrochemistry 1999. Astronomy and Astrophysics, 2000, 146, 157-168.	2.1	273
8	A Threeâ€Position Spectral Line Survey of Sagittarius B2 between 218 and 263 GHz. II. Data Analysis. Astrophysical Journal, Supplement Series, 2000, 128, 213-243.	7.7	238
9	Enhanced Deuterium Fractionation in Dense Interstellar Cores Resulting from Multiply Deuterated H[FORMULA][F][SUP]+[/SUP][INF]3[/INF][/F][/FORMULA]. Astrophysical Journal, 2003, 591, L41-L44.	4.5	226
10	The Global Trachoma Mapping Project: Methodology of a 34-Country Population-Based Study. Ophthalmic Epidemiology, 2015, 22, 214-225.	1.7	196
11	A model of the chemistry in hot molecular cores. Monthly Notices of the Royal Astronomical Society, 1988, 231, 409-417.	4.4	187
12	Dissociative recombination of protonated methanol. Faraday Discussions, 2006, 133, 177-190.	3.2	177
13	Negative Ions in Space. Chemical Reviews, 2017, 117, 1765-1795.	47.7	176
14	Interstellar Alcohols. Astrophysical Journal, 1995, 448, 232.	4.5	175
15	Complex organic molecules in protoplanetary disks. Astronomy and Astrophysics, 2014, 563, A33.	5.1	169
16	CHEMICAL PROCESSES IN PROTOPLANETARY DISKS. Astrophysical Journal, 2010, 722, 1607-1623.	4.5	168
17	FIRST DETECTION OF GAS-PHASE METHANOL IN A PROTOPLANETARY DISK. Astrophysical Journal Letters, 2016, 823, L10.	8.3	166
18	Virtual atomic and molecular data centre. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 2151-2159.	2.3	164

#	Article	IF	Citations
19	Detection of C ₈ H ⁻ and Comparison with C ₈ H toward IRC +10 216. Astrophysical Journal, 2007, 664, L47-L50.	4.5	146
20	Large molecules in the envelope surrounding IRC+10216. Monthly Notices of the Royal Astronomical Society, 2000, 316, 195-203.	4.4	143
21	Molecular Hydrogen Emission from Protoplanetary Disks. II. Effects of Xâ€Ray Irradiation and Dust Evolution. Astrophysical Journal, 2007, 661, 334-353.	4. 5	133
22	The formation of oxygen-containing organic molecules in the Orion compact ridge. Astrophysical Journal, 1991, 369, 147.	4.5	129
23	The chemistry of multiply deuterated species in cold, dense interstellar cores. Astronomy and Astrophysics, 2004, 424, 905-917.	5.1	127
24	A Threeâ€Position Spectral Line Survey of Sagittarius B2 between 218 and 263 GHz. I. The Observational Data. Astrophysical Journal, Supplement Series, 1998, 117, 427-529.	7.7	126
25	Molecular hydrogen emission from protoplanetary disks. Astronomy and Astrophysics, 2005, 438, 923-938.	5.1	125
26	CHEMICAL PROCESSES IN PROTOPLANETARY DISKS. II. ON THE IMPORTANCE OF PHOTOCHEMISTRY AND X-RAY IONIZATION. Astrophysical Journal, 2012, 747, 114.	4.5	123
27	The physical and chemical structure of hot molecular cores. Astronomy and Astrophysics, 2004, 414, 409-423.	5.1	122
28	The virtual atomic and molecular data centre (VAMDC) consortium. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 074003.	1.5	120
29	A survey of molecular line emission towards ultracompact Hii regions. Astronomy and Astrophysics, 1998, 133, 29-49.	2.1	120
30	Models of the gas-grain interaction - deuterium chemistry. Monthly Notices of the Royal Astronomical Society, 1989, 237, 661-671.	4.4	115
31	ALMA HINTS AT THE PRESENCE OF TWO COMPANIONS IN THE DISK AROUND HD 100546. Astrophysical Journal Letters, 2014, 791, L6.	8.3	114
32	ALMA OBSERVATIONS OF A GAP AND A RING IN THE PROTOPLANETARY DISK AROUND TW HYA. Astrophysical Journal Letters, 2016, 819, L7.	8.3	105
33	Molecular distributions in the inner regions of protostellar disks. Astronomy and Astrophysics, 2002, 385, 632-646.	5.1	103
34	The effect of rapid neutral-neutral reactions on chemical models of dense interstellar clouds. Monthly Notices of the Royal Astronomical Society, 1994, 268, 335-344.	4.4	98
35	Hydrocarbon Anions in Interstellar Clouds and Circumstellar Envelopes. Astrophysical Journal, 2007, 662, L87-L90.	4.5	98
36	A 330-360 GHz spectral survey of G 34.3+0.15. I. Data and physical analysis. Astronomy and Astrophysics, 1996, 119, 333-367.	2.1	97

#	Article	IF	Citations
37	On the Abundance Gradients of Organic Molecules along the TMC†Ridge. Astrophysical Journal, 2000, 535, 256-265.	4.5	95
38	The Synthesis of Benzene in the Proto–planetary Nebula CRL 618. Astrophysical Journal, 2002, 574, L167-L170.	4.5	95
39	A GAP WITH A DEFICIT OF LARGE GRAINS IN THE PROTOPLANETARY DISK AROUND TW Hya. Astrophysical Journal Letters, 2016, 829, L35.	8.3	90
40	DENSITY-ENHANCED GAS AND DUST SHELLS IN A NEW CHEMICAL MODEL FOR IRC+10216. Astrophysical Journal, 2009, 697, 68-78.	4.5	86
41	A SCUBA imaging survey of ultracompact HII regions. Astronomy and Astrophysics, 2006, 453, 1003-1026.	5.1	86
42	CHEMICAL EVOLUTION OF PROTOPLANETARY DISKS—THE EFFECTS OF VISCOUS ACCRETION, TURBULENT MIXING, AND DISK WINDS. Astrophysical Journal, 2011, 731, 115.	4.5	82
43	The chemistry of deuterium in hot molecular cores. Monthly Notices of the Royal Astronomical Society, 1996, 280, 1046-1054.	4.4	81
44	Dissociative Recombination of N2H+: Evidence for Fracture of the N—N Bond. Astrophysical Journal, 2004, 609, 459-464.	4.5	81
45	THE EFFECTS OF MOLECULAR ANIONS ON THE CHEMISTRY OF DARK CLOUDS. Astrophysical Journal, 2009, 700, 752-761.	4.5	76
46	Desorption processes and the deuterium fractionation in molecular clouds. Monthly Notices of the Royal Astronomical Society, 1998, 298, 562-568.	4.4	74
47	The chemistry of protoplanetary nebulae. Astronomy and Astrophysics, 2003, 402, 189-199.	5.1	71
48	Observational tests of interstellar methanol formation. Astronomy and Astrophysics, 2011, 533, A24.	5.1	70
49	Chemical modelling of molecular sources - VI. Carbon-bearing molecules in oxygen-rich circumstellar envelopes. Monthly Notices of the Royal Astronomical Society, 1988, 230, 79-86.	4.4	64
50	The chemistry of phosphorus in hot molecular cores. Monthly Notices of the Royal Astronomical Society, 1994, 270, 570-574.	4.4	64
51	Chemical modelling of molecular sources – I. TMC-1. Monthly Notices of the Royal Astronomical Society, 1984, 207, 405-423.	4.4	59
52	Deuterium in the Galactic Centre as a result of recent infall of low-metallicity gas. Nature, 2000, 405, 1025-1027.	27.8	59
53	The importance of new rate coefficients for deuterium fractionation reactions in interstellar chemistry. Monthly Notices of the Royal Astronomical Society, 2002, 336, 283-290.	4.4	59
54	CANDIDATE WATER VAPOR LINES TO LOCATE THE H ₂ O SNOWLINE THROUGH HIGH-DISPERSION SPECTROSCOPIC OBSERVATIONS. I. THE CASE OF A T TAURI STAR. Astrophysical Journal, 2016, 827, 113.	4.5	58

#	Article	IF	Citations
55	(Sub)stellar companions shape the winds of evolved stars. Science, 2020, 369, 1497-1500.	12.6	57
56	Transport processes and chemical evolution in steady accretion disk flows. Astronomy and Astrophysics, 2004, 415, 643-659.	5.1	57
57	H2 emission in the EUV spectrum of T Tauri and Burnham's nebula. Nature, 1981, 290, 34-36.	27.8	56
58	Quality Assurance and Quality Control in the Global Trachoma Mapping Project. American Journal of Tropical Medicine and Hygiene, 2018, 99, 858-863.	1.4	56
59	On the origin of NH in diffuse interstellar clouds. Monthly Notices of the Royal Astronomical Society, 1993, 260, 420-424.	4.4	55
60	A survey of [D\$_mathsf{2}\$CO] /[H\$_mathsf{2}\$CO] and [N\$_mathsf{2}\$D+] /[N\$_mathsf{2}\$H+] ratios towards protostellar cores. Astronomy and Astrophysics, 2007, 471, 849-863.	5.1	54
61	The importance of kinetically excited ions in the synthesis of interstellar molecules. Monthly Notices of the Royal Astronomical Society, 1984, 211, 857-865.	4.4	53
62	PHOTODETACHMENT AS A DESTRUCTION MECHANISM FOR CN ^{â€"} AND C ₃ N ^{â€"} ANIONS IN CIRCUMSTELLAR ENVELOPES. Astrophysical Journal, 2013, 776, 25.	4.5	53
63	A Decade with VAMDC: Results and Ambitions. Atoms, 2020, 8, 76.	1.6	53
64	A survey of [HDCO]/[H\$_mathsf{2}\$CO] and [DCN]/[HCN] ratios towards low-mass protostellar cores. Astronomy and Astrophysics, 2002, 381, 1026-1038.	5.1	53
65	Grain-surface formation of multi-deuterated molecules. Monthly Notices of the Royal Astronomical Society, 1989, 240, 25P-29P.	4.4	51
66	Chemical modelling of molecular sources - IV. Time-dependent chemistry of dark clouds. Monthly Notices of the Royal Astronomical Society, 1985, 217, 507-522.	4.4	49
67	Carbon chemistry in Galactic bulge planetary nebulae. Monthly Notices of the Royal Astronomical Society, 2011, 414, 1667-1678.	4.4	48
68	Observational tests for grain chemistry: posterior isotopic labelling. Monthly Notices of the Royal Astronomical Society, 2004, 347, 157-162.	4.4	45
69	DISCOVERY OF INTERSTELLAR ANIONS IN CEPHEUS AND AURIGA. Astrophysical Journal Letters, 2011, 730, L18.	8.3	42
70	ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK. Astrophysical Journal, 2016, 831, 200.	4.5	42
71	The chemistry of SH+ in shocked interstellar gas. Monthly Notices of the Royal Astronomical Society, 1986, 221, 673-678.	4.4	41
72	Modelling deuterium fractionation in interstellar clouds. Planetary and Space Science, 2002, 50, 1189-1195.	1.7	39

#	Article	IF	Citations
73	The role of H 2 D + in the deuteration of interstellar molecules. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2000, 358, 2535-2547.	3.4	37
74	Deuterium Fractionation in Interstellar Clouds. Space Science Reviews, 2003, 106, 73-86.	8.1	37
75	The Chemistry of Cold Interstellar Cloud Cores. , 2008, , 1-54.		37
76	Cyanopolyynes in hot cores: modelling G305.2+0.2. Monthly Notices of the Royal Astronomical Society, 2009, 394, 221-230.	4.4	37
77	Discovery of An au-scale Excess in Millimeter Emission from the Protoplanetary Disk around TW Hya. Astrophysical Journal Letters, 2019, 878, L8.	8.3	37
78	The detection of hot ethanol in G34.3+0.15. Monthly Notices of the Royal Astronomical Society, 1995, 273, 25-29.	4.4	36
79	Observations of deuterated cyanoacetylene in dark clouds. Monthly Notices of the Royal Astronomical Society, 1994, 267, 59-68.	4.4	35
80	The abundance of HNCO and its use as a diagnostic of environment. Astronomy and Astrophysics, 2010, 510, A85.	5.1	34
81	Astrochemistry. Plasma Sources Science and Technology, 2015, 24, 043001.	3.1	34
82	Candidate Water Vapor Lines to Locate the H ₂ O Snowline Through High-dispersion Spectroscopic Observations. II. The Case of a Herbig Ae Star. Astrophysical Journal, 2017, 836, 118.	4.5	34
83	NCCN in TMC-1 and IRC+10216. Monthly Notices of the Royal Astronomical Society, 2003, 341, 609-616.	4.4	32
84	Early Results of the 3 mm Spectral Line Survey toward the Lynds 1157 B1 Shocked Region. Publication of the Astronomical Society of Japan, 2011, 63, 459-472.	2.5	32
85	Effects of accretion flow on the chemical structure in the inner regions of protoplanetary disks. Astronomy and Astrophysics, 2009, 495, 183-188.	5.1	31
86	Chemistry and distribution of daughter species in the circumstellar envelopes of O-rich AGB stars. Astronomy and Astrophysics, 2016, 588, A4.	5.1	31
87	SiO in G34.26: Outflows and shocks in a high mass star forming region. Astronomy and Astrophysics, 2001, 372, 281-290.	5.1	31
88	The HCS+ /CS abundance ratio in interstellar clouds. Monthly Notices of the Royal Astronomical Society, 1985, 216, 1025-1031.	4.4	30
89	New Theoretical Results Concerning the Interstellar Abundance of Molecular Oxygen. Astrophysical Journal, 2008, 681, 1318-1326.	4.5	30
90	Elemental depletions in the interstellar medium. Astrophysical Journal, 1978, 220, 124.	4.5	30

#	Article	IF	CITATIONS
91	The sensitivity of gas-phase models of dense interstellar clouds to changes in dissociative recombination branching ratios. Astronomy and Astrophysics, 1988, 194, 250-6.	5.1	30
92	An efficient gas phase synthesis for interstellar PN. Monthly Notices of the Royal Astronomical Society, 1987, 229, 41P-44P.	4.4	29
93	Photodissociation and chemistry of N ₂ in the circumstellar envelope of carbon-rich AGB stars. Astronomy and Astrophysics, 2014, 568, A111.	5.1	29
94	The effect of varying cosmic-ray ionization rates on dark cloud chemistry. Monthly Notices of the Royal Astronomical Society, 1994, 269, 641-648.	4.4	28
95	Determining the effects of clumping and porosity on the chemistry in a non-uniform AGB outflow. Astronomy and Astrophysics, 2018, 616, A106.	5.1	28
96	Dust Continuum Emission and the Upper Limit Fluxes of Submillimeter Water Lines of the Protoplanetary Disk around HD 163296 Observed by ALMA. Astrophysical Journal, 2019, 875, 96.	4.5	28
97	Sulphur-bearing carbon chains in IRC+10216. Monthly Notices of the Royal Astronomical Society, 2001, 327, 1173-1177.	4.4	27
98	MOLECULAR LINE EMISSION FROM A PROTOPLANETARY DISK IRRADIATED EXTERNALLY BY A NEARBY MASSIVE STAR. Astrophysical Journal Letters, 2013, 766, L23.	8.3	27
99	Molecule production on interstellar oxide grains. Monthly Notices of the Royal Astronomical Society, 1978, 185, 915-926.	4.4	26
100	Chemical modelling of dark clouds in the LMC and SMC. Monthly Notices of the Royal Astronomical Society, 1990, 242, 92-97.	4.4	26
101	The chemistry of PAH and fullerene molecules in interstellar clouds. Monthly Notices of the Royal Astronomical Society, 1992, 259, 35P-39P.	4.4	26
102	Dissociative Recombination of the Thioformyl (HCS+) and Carbonyl Sulfide (OCS+) Cations. Astrophysical Journal, 2005, 631, 653-659.	4.5	26
103	A new model for interstellar dust. Astrophysics and Space Science, 1979, 65, 69-82.	1.4	25
104	Silicon chemistry in dense clouds. Astrophysics and Space Science, 1980, 72, 509-517.	1.4	25
105	Chemistry in a protoplanetary nebula. Monthly Notices of the Royal Astronomical Society, 1992, 255, 217-226.	4.4	25
106	Deuterium in interstellar clouds. Astronomy and Geophysics, 2005, 46, 2.29-2.32.	0.2	25
107	Sulphur-bearing molecules in AGB stars. Astronomy and Astrophysics, 2017, 606, A124.	5.1	25
108	Molecules in bipolar proto-planetary nebulae. Astronomy and Astrophysics, 2005, 429, 977-992.	5.1	24

#	Article	IF	Citations
109	THE DISSOCIATIVE RECOMBINATION OF PROTONATED ACRYLONITRILE, CH ₂ CH ₂ CHCNH ⁺ , WITH IMPLICATIONS FOR THE NITRILE CHEMISTRY IN DARK MOLECULAR CLOUDS AND THE UPPER ATMOSPHERE OF TITAN. Astrophysical Journal, 2009, 695, 317-324.	4.5	24
110	VAMDCâ€"The Virtual Atomic and Molecular Data Centreâ€"A New Way to Disseminate Atomic and Molecular Dataâ€"VAMDC Level 1 Release. AIP Conference Proceedings, 2011, , .	0.4	24
111	A Molecular Line Survey of W3(OH) and W3 IRS 5 from 84.7 to 115.6 GHz: Observational Data and Analyses. Astrophysical Journal, Supplement Series, 2006, 162, 161-206.	7.7	23
112	Complex organic molecules along the accretion flow in isolated and externally irradiated protoplanetary disks. Faraday Discussions, 2014, 168, 389-421.	3.2	23
113	Directed gas phase formation of silicon dioxide and implications for the formation of interstellar silicates. Nature Communications, 2018, 9, 774.	12.8	23
114	CH abundance gradient in TMC-1. Astronomy and Astrophysics, 2011, 531, A121.	5.1	22
115	Organic Molecules in the Interstellar Medium. , 2004, , 17-31.		21
116	ALMA-resolved salt emission traces the chemical footprint and inner wind morphology of VY Canis Majoris. Astronomy and Astrophysics, 2016, 592, A76.	5.1	21
117	The cost of mapping trachoma: Data from the Global Trachoma Mapping Project. PLoS Neglected Tropical Diseases, 2017, 11, e0006023.	3.0	21
118	Dense cloud chemistry - I. Direct and indirect effects of grain surface reactions. Monthly Notices of the Royal Astronomical Society, 1982, 199, 309-319.	4.4	20
119	Alternative routes to deuteration in dark clouds. Monthly Notices of the Royal Astronomical Society, 1993, 262, 868-880.	4.4	20
120	The role of Formula and Formula ions in the degradation of interstellar molecules. Monthly Notices of the Royal Astronomical Society, 1994, 266, 31-34.	4.4	20
121	Modelling enhanced density shells in the circumstellar envelope of IRC +10216. Monthly Notices of the Royal Astronomical Society, 2003, 339, 1041-1047.	4.4	20
122	Gas-phase models for the evolved planetary nebulae NGC 6781, M4-9 and NGC 7293. Monthly Notices of the Royal Astronomical Society, 2001, 325, 881-885.	4.4	19
123	The James Clerk Maxwell Telescope Spectral Legacy Survey. Publications of the Astronomical Society of the Pacific, 2007, 119, 102-111.	3.1	19
124	The Effect of Carbon Grain Destruction on the Chemical Structure of Protoplanetary Disks. Astrophysical Journal, 2019, 870, 129.	4.5	19
125	DISSOCIATIVE RECOMBINATION OF PROTONATED FORMIC ACID: IMPLICATIONS FOR MOLECULAR CLOUD AND COMETARY CHEMISTRY. Astrophysical Journal, 2010, 709, 1429-1434.	4.5	19
126	Deuterium fractionation along the TMC-1 ridge. Astronomy and Astrophysics, 2001, 376, 1054-1063.	5.1	18

#	Article	IF	CITATIONS
127	Candidate Water Vapor Lines to Locate the H ₂ O Snowline through High-dispersion Spectroscopic Observations. Ill. Submillimeter H ₂ ¹⁶ O and H ₂ ¹⁸ O Lines. Astrophysical Journal, 2018, 855, 62.	4.5	18
128	The Role of Internal Photons on the Chemistry of the Circumstellar Envelopes of AGB Stars. Astrophysical Journal, 2019, 873, 36.	4.5	18
129	A chemical dynamics study on the gas phase formation of thioformaldehyde (H ₂ CS) and its thiohydroxycarbene isomer (HCSH). Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22712-22719.	7.1	18
130	A laboratory simulation of the interstellar 220 nanometer feature. Astrophysical Journal, 1982, 256, L61.	4.5	18
131	Diatomic oxide interstellar grains. Monthly Notices of the Royal Astronomical Society, 1978, 183, 177-185.	4.4	17
132	ATOMIUM: A high-resolution view on the highly asymmetric wind of the AGB star <i>$i \in \langle i \rangle$ < sup>1Gruis. Astronomy and Astrophysics, 2020, 644, A61.</i>	5.1	17
133	Chemical modelling of molecular sources – II. L183. Monthly Notices of the Royal Astronomical Society, 1984, 207, 425-432.	4.4	16
134	Theoretical studies of interstellar molecular shocks - VI. The formation of molecules containing two or three carbon atoms. Monthly Notices of the Royal Astronomical Society, 1987, 227, 993-1011.	4.4	16
135	Formation of complex molecules in TMC-1. Nature, 1983, 301, 402-404.	27.8	15
136	The Formation of Large Interstellar Molecules. Monthly Notices of the Royal Astronomical Society, 1975, 173, 527-535.	4.4	14
137	Interstellar CH 3 CCD. Astrophysical Journal, 2005, 627, L117-L120.	4.5	14
138	High Spatial Resolution Observations of Molecular Lines toward the Protoplanetary Disk around TW Hya with ALMA. Astrophysical Journal, 2021, 914, 113.	4.5	14
139	Chemistry in Expanding Circumstellar Envelopes. Astrophysics and Space Science Library, 1988, , 287-308.	2.7	14
140	Galactic Edge Clouds. I. Molecular Line Observations and Chemical Modeling of Edge Cloud 2. Astrophysical Journal, 2007, 671, 1766-1783.	4.5	14
141	ATOMIUM: ALMA tracing the origins of molecules in dust forming oxygen rich M-type stars. Astronomy and Astrophysics, 2022, 660, A94.	5.1	14
142	Formaldehyde production in diffuse interstellar clouds. Monthly Notices of the Royal Astronomical Society, 1979, 186, 685-690.	4.4	13
143	Measurements of Low Temperature Rate Coefficients for the Reaction of CH with CH ₂ O and Application to Dark Cloud and AGB Stellar Wind Models. Astrophysical Journal, 2019, 885, 134.	4.5	13
144	ATOMIUM: halide molecules around the S-type AGB star W Aquilae. Astronomy and Astrophysics, 2021, 655, A80.	5.1	13

#	Article	IF	CITATIONS
145	Deuterated as a probe of isotope fractionation in star-forming regions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 3063-3080.	3.4	13
146	A search for SH+ toward Zeta Ophiuchi. Monthly Notices of the Royal Astronomical Society, 1988, 231, 953-955.	4.4	12
147	Molecular D/H ratios in the dense gas surrounding low-mass protostars. Planetary and Space Science, 2002, 50, 1173-1178.	1.7	12
148	Carbon depletion and the \hat{A} 2175 feature. Monthly Notices of the Royal Astronomical Society, 1979, 189, 507-510.	4.4	11
149	New detections of HC5N towards hot cores associated with 6.7ÂGHz methanol masers. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2252-2263.	4.4	11
150	Chemistry in AGB stars: successes and challenges. Journal of Physics: Conference Series, 2016, 728, 052001.	0.4	11
151	Molecule and Dust Grain Formation. Astronomy and Astrophysics Library, 2004, , 247-289.	0.1	11
152	CH\$_mathsf{2}\$DCCH along the TMC-1 ridge. Astronomy and Astrophysics, 2002, 381, 560-565.	5.1	11
153	The impact of stellar companion UV photons on the chemistry of the circumstellar environments of AGB stars. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1204-1222.	4.4	11
154	Dense cloud chemistry - II. The HCS+/CS ratio. Monthly Notices of the Royal Astronomical Society, 1983, 202, 683-689.	4.4	10
155	Two-dimensional models of proto planetary disk chemistry. Astrophysics and Space Science, 2003, 285, 761-768.	1.4	10
156	Nonadiabatic reaction dynamics to silicon monosulfide (SiS): A key molecular building block to sulfur-rich interstellar grains. Science Advances, 2021, 7, .	10.3	10
157	Interstellar Formaldehyde Production. Monthly Notices of the Royal Astronomical Society, 1975, 170, 51P-55P.	4.4	9
158	Dissociative Recombination of D3S+: Product Branching Fractions and Absolute Cross Sections. Astrophysical Journal, 2008, 681, 1717-1724.	4.5	9
159	Chemical modelling of quiescent dense interstellar clouds. , 1990, , 115-131.		9
160	Organic Synthesis in the Interstellar Medium by Low-Energy Carbon Irradiation. Journal of Physical Chemistry A, 2013, 117, 9666-9672.	2.5	9
161	Chemistry in the circumstellar medium. Astrophysics and Space Science, 2008, 313, 223-227.	1.4	8
162	Organic molecular anions in interstellar and circumstellar environments. Proceedings of the International Astronomical Union, 2008, 4, 157-160.	0.0	8

#	Article	IF	Citations
163	ATOMIUM: The astounding complexity of the near circumstellar environment of the M-type AGB star R Hydrae. Astronomy and Astrophysics, 2021, 651, A82.	5.1	8
164	The Importance of Failure: How Doing Impact Surveys That Fail Saves Trachoma Programs Money. American Journal of Tropical Medicine and Hygiene, 2020, 103, 2481-2487.	1.4	8
165	Interstellar grains: constraints on composition from infrared observations. Monthly Notices of the Royal Astronomical Society, 1980, 191, 641-649.	4.4	7
166	Formaldehyde in oxygen-rich circumstellar envelopes. Monthly Notices of the Royal Astronomical Society, 1993, 262, L55-L58.	4.4	7
167	Australia Telescope Compact Array 1.2-cm observations of the massive star-forming region G305.2+0.2. Monthly Notices of the Royal Astronomical Society, 2007, 380, 1703-1714.	4.4	7
168	Determining the effects of clumping and porosity on the chemistry in a non-uniform AGB outflow <i>(Corrigendum)</i>). Astronomy and Astrophysics, 2020, 634, C1.	5.1	7
169	Deuterium Fractionation in Interstellar Clouds. Space Sciences Series of ISSI, 2003, , 73-86.	0.0	7
170	Chemical processes in dark interstellar clouds – the effects of CNO depletion. Monthly Notices of the Royal Astronomical Society, 1991, 253, 217-221.	4.4	6
171	Origin of the diffuse interstellar absorption bands - IV. Relation to interstellar depletion. Monthly Notices of the Royal Astronomical Society, 1979, 187, 379-387.	4.4	5
172	Detection of H2 emission in Herbig-Haro object No. 101. Monthly Notices of the Royal Astronomical Society, 1983, 203, 785-789.	4.4	5
173	Structure and chemistry in the hot molecular core G34.3+0.15. Astrophysics and Space Science, 1995, 224, 177-180.	1.4	5
174	Sun and Protosolar Nebula - Working Group Report. Space Science Reviews, 2003, 106, 319-376.	8.1	5
175	Dissociative Recombination of CD 3 OD 2 +. Proceedings of the International Astronomical Union, 2005, 1, 117.	0.0	5
176	Complex molecule formation in grain mantles. Astronomy and Astrophysics, 2010, 517, A1.	5.1	5
177	Irradiation of Water Ice by C ⁺ Ions in the Cosmic Environment. Journal of Physical Chemistry A, 2014, 118, 6991-6998.	2.5	5
178	A Population-Based Trachoma Prevalence Survey Covering Seven Districts of Sangha and Likouala Departments, Republic of the Congo. Ophthalmic Epidemiology, 2018, 25, 155-161.	1.7	5
179	Chemical dynamics study on the gas-phase reaction of the D1-silylidyne radical (SiD; X ² Î) with deuterium sulfide (D ₂ S) and hydrogen sulfide (H ₂ S). Physical Chemistry Chemical Physics, 2021, 23, 13647-13661.	2.8	5
180	A detailed view on the circumstellar environment of the M-type AGB star EP Aquarii. Astronomy and Astrophysics, 2020, 642, A93.	5.1	5

#	Article	IF	CITATIONS
181	The role of ultraviolet photons in circumstellar astrochemistry. Chinese Journal of Chemical Physics, 2020, 33, 668-679.	1.3	5
182	Chemical modelling of dust–gas chemistry within AGB outflows – III. Photoprocessing of the ice and return to the ISM. Monthly Notices of the Royal Astronomical Society, 2020, 501, 491-506.	4.4	5
183	ALMA High-resolution Multiband Analysis for the Protoplanetary Disk around TW Hya. Astrophysical Journal, 2022, 928, 49.	4.5	5
184	Silicon monoxide and the 10 ?m interstellar feature. Astrophysics and Space Science, 1978, 53, 223-225.	1.4	4
185	The depletion of S and CL on interstellar oxide grains. Astrophysical Journal, 1979, 233, L87.	4.5	4
186	Giant grains?. Astrophysics and Space Science, 1976, 45, 467-476.	1.4	3
187	Dense cloud chemistry. Astrophysics and Space Science, 1982, 87, 435-453.	1.4	3
188	A monoclonal antibody against the slow isoform of skeletal muscle Ca2+-ATPase selectively stains a subpopulation of neurons in the central nervous system. Neuroscience Letters, 1989, 106, 163-168.	2.1	3
189	The erosion of PAH molecules within shocks in dark clouds. Monthly Notices of the Royal Astronomical Society, 1990, 242, 512-516.	4.4	3
190	Chemical evolution in the circumstellar structure of B5 IRS1. Monthly Notices of the Royal Astronomical Society, 1996, 279, 1210-1218.	4.4	3
191	Chemistry in anisotropic asymptotic giant branch winds. Monthly Notices of the Royal Astronomical Society, 1996, 282, L21-L25.	4.4	3
192	Hot Molecular Cores â€" A Case for Accretion. Astrophysics and Space Science Library, 1988, , 263-270.	2.7	3
193	Sun and Protosolar Nebula. Space Sciences Series of ISSI, 2003, , 319-376.	0.0	3
194	Fevering Interstellar Ices Have More CH ₃ OD. ACS Earth and Space Chemistry, 2022, 6, 1171-1188.	2.7	3
195	Magnetite and the origin of the very broad structure in interstellar extinction. Monthly Notices of the Royal Astronomical Society, 1982, 200, 527-533.	4.4	2
196	Silicon monoxide: A component of interstellar grains?. Astrophysics and Space Science, 1982, 86, 497-500.	1.4	2
197	The chemistry in clumpy AGB outflows. Proceedings of the International Astronomical Union, 2018, 14, 531-532.	0.0	2
198	Models of Galactic Molecular Sources. , 1985, , 613-619.		2

#	Article	IF	CITATIONS
199	Turbulent diffusion and mixing in interstellar dark clouds with adsorption onto grains. Astronomy and Astrophysics, 2003, 399, 553-565.	5.1	2
200	Species cycling and the enhancement of ammonia in pre-stellar cores. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1228-1242.	4.4	2
201	On the contribution of grain surface reactions to interstellar molecule densities. Astrophysics and Space Science, 1976, 44, 385-388.	1.4	1
202	Large interstellar molecules. Astrophysics and Space Science, 1977, 48, 243-248.	1.4	1
203	Molecule formation and cloud collapse. Astrophysics and Space Science, 1977, 48, 379-387.	1.4	1
204	Chemistry in Dense Interstellar Clouds – Data Requirements. Highlights of Astronomy, 1989, 8, 369-374.	0.0	1
205	Chemistry in Protoplanetary Nebulae. Symposium - International Astronomical Union, 1992, 150, 363-364.	0.1	1
206	Distribution of the slow/cardiac isoform of skeletal muscle Ca(2+)-ATPase in developing and mature tissues of chickens determined using a monoclonal antibody Journal of Histochemistry and Cytochemistry, 1993, 41, 215-224.	2.5	1
207	A study of carbon monoxide and neutral carbon in the SI 06 molecular core. Monthly Notices of the Royal Astronomical Society, 1995, , .	4.4	1
208	Molecular Data Needs in Astrochemistry. Symposium - International Astronomical Union, 2000, 197, 303-314.	0.1	1
209	The evolution of solar systems. Contemporary Physics, 2000, 41, 191-202.	1.8	1
210	The Chemistry of CRL 618. Symposium - International Astronomical Union, 2003, 209, 279-280.	0.1	1
211	What Do We Know and What Do We Need to Know?. Proceedings of the International Astronomical Union, 2005, 1, 77.	0.0	1
212	Formation of biomolecule precursors in space. Journal of Physics: Conference Series, 2007, 88, 012068.	0.4	1
213	The Impact of UV Radiation on Circumstellar Chemistry. Proceedings of the International Astronomical Union, 2018, 14, 191-195.	0.0	1
214	Molecule Formation in External Galaxies. , 1992, , 121-126.		1
215	Chemical models of hot molecular cores. , 1989, , 368-371.		0
216	The deuterated species of large interstellar molecules. Astrophysics and Space Science, 1977, 47, L17-L19.	1.4	0

#	Article	IF	Citations
217	The temperature of interstellar oxide grains. Astrophysics and Space Science, 1981, 78, 505-508.	1.4	O
218	The chemistry of cool circumstellar envelopes. Symposium - International Astronomical Union, 1987, 122, 551-552.	0.1	0
219	The Formation of Deuterated Molecules in Dense Clouds. Symposium - International Astronomical Union, 1992, 150, 211-215.	0.1	0
220	Molecule Formation in External Galaxies. Symposium - International Astronomical Union, 1992, 150, 121-126.	0.1	0
221	Carbon Chemistry in Oxygen-Rich Circumstellar Envelopes. , 1997, 251, 281-284.		0
222	The Deuterium Abundance In The Galactic Center 50 km/s Molecular Cloud: Evidence For A Cosmological Origin Of D. Symposium - International Astronomical Union, 2000, 198, 167-175.	0.1	0
223	Interstellar and circumstellar chemistry: The UMIST database. AIP Conference Proceedings, 2000, , .	0.4	0
224	Observational Tests for Grain Chemistry: Posterior Isotopic Labelling. ChemInform, 2004, 35, no.	0.0	0
225	Division VI: Interstellar Matter. Proceedings of the International Astronomical Union, 2005, 1, 267-271.	0.0	0
226	Deuterium Nucleosynthesis in AGN: Is D Cosmological?. Nuclear Physics A, 2005, 758, 795-798.	1.5	0
227	Molecular Hydrogen emission from protoplanetary disks: effects of X-ray irradiation and dust evolution. Proceedings of the International Astronomical Union, 2006, 2, 456-456.	0.0	0
228	Molecular line observations and chemical modelling of galactic edge clouds. Proceedings of the International Astronomical Union, 2008, 4, 145-146.	0.0	0
229	Distributions of hot molecules in young circumstellar disks. EAS Publications Series, 2010, 41, 177-180.	0.3	0
230	Molecular hydrogen emission from protoplanetary disks: UV and X-ray irradiated disk model with dust evolution. EAS Publications Series, 2010, 41, 181-184.	0.3	0
231	Galactic Bulge PNe: Carbon molecules in oxygen-rich environments. Proceedings of the International Astronomical Union, 2011, 7, 259-262.	0.0	0
232	Water in Protoplanetary Disks. Proceedings of the International Astronomical Union, 2012, 8, 235-237.	0.0	0
233	Determining the effect of a non-uniform AGB outflow on its chemistry. Proceedings of the International Astronomical Union, 2017, 13, 43-46.	0.0	0
234	Possibility to locate the position of the H ₂ O snowline in protoplanetary disks through spectroscopic observations. Proceedings of the International Astronomical Union, 2017, 13, 113-120.	0.0	0

#	Article	IF	Citations
235	Chemistry in carbon-rich protoplanetary disks: Effect of carbon grain destruction. Proceedings of the International Astronomical Union, 2018, 14, 289-290.	0.0	0
236	Possibility to locate the position of the H ₂ O snowline in protoplanetary disks through spectroscopic observations. Proceedings of the International Astronomical Union, 2018, 14, 393-395.	0.0	0
237	The Chemistry of Cool Circumstellar Envelopes. , 1987, , 551-552.		0
238	The Formation of Deuterated Molecules in Dense Clouds. , 1992, , 211-215.		0
239	Growth of Large Molecules and Small Grains. Springer Proceedings in Physics, 1997, , 507-515.	0.2	0
240	Carbon-Bearing Molecules in Oxygen-Rich Circumstellar Envelopes., 1997,, 255-258.		0
241	Carbon Chemistry in Oxygen-Rich Circumstellar Envelopes. , 1997, , 281-284.		0
242	The chemistry of hot molecular cores. , 2019, , 249-270.		0
243	Gas-phase Synthesis of Silaformaldehyde (H ₂ SiO) and Hydroxysilylene (HSiOH) in Outflows of Oxygen-rich Asymptotic Giant Branch Stars. Astrophysical Journal Letters, 2021, 921, L7.	8.3	0
244	Chemical evolution in local interstellar molecular clouds. , 1985, , 64-67.		0