
Peter Dinér

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/852999/publications.pdf Version: 2024-02-01

Ρετέρ ΠινÃΩρ

#	Article	IF	CITATIONS
1	Stereoselective synthesis of unnatural α-amino acid derivatives through photoredox catalysis. Chemical Science, 2021, 12, 5430-5437.	7.4	33
2	Experimental review of PEI electrodeposition onto copper substrates for insulation of complex geometries. RSC Advances, 2021, 11, 34599-34604.	3.6	2
3	Accessing Perfluoroaryl Sulfonimidamides and Sulfoximines via Photogenerated Perfluoroaryl Nitrenes: Synthesis and Application as a Chiral Auxiliary. Journal of Organic Chemistry, 2021, 86, 17119-17128.	3.2	9
4	Asymmetric Synthesis of Adjacent Tri―and Tetrasubstituted Carbon Stereocenters: Organocatalytic Aldol Reaction of an Hydantoin Surrogate with Azaarene 2 arbaldehydes. Chemistry - A European Journal, 2019, 25, 12431-12438.	3.3	15
5	Mild and Rapid Aniline/HBF 4 •DEEâ€Catalysed Formation of Sulfinyl Imines. ChemistrySelect, 2019, 4, 7431-7436.	1.5	1
6	Student-Driven Development of Greener Chemistry in Undergraduate Teaching: Synthesis of Lidocaine Revisited. Journal of Chemical Education, 2019, 96, 1389-1394.	2.3	12
7	HBF4·DEE-catalyzed formation of sulfinyl imines: Synthesis and mechanistic studies. Tetrahedron Letters, 2018, 59, 1249-1253.	1.4	8
8	Simple and Effective Integration of Green Chemistry and Sustainability Education into an Existing Organic Chemistry Course. Journal of Chemical Education, 2018, 95, 1301-1306.	2.3	29
9	Catalytic Reductions and Tandem Reactions of Nitro Compounds Using in Situ Prepared Nickel Boride Catalyst in Nanocellulose Solution. Organic Letters, 2017, 19, 4746-4749.	4.6	25
10	Palladium-Catalyzed C(sp3)–C(sp2) Cross-Couplings of O-(α-Bromoacyl) Cyanohydrins with Boronic Acids: An Entry to EnantioAenriched N-Acylated β-Amino Alcohols. Synthesis, 2016, 48, 3175-3182.	2.3	8
11	A nickel (II) PY5 complex as an electrocatalyst for water oxidation. Journal of Catalysis, 2016, 335, 72-78.	6.2	121
12	Yttrium from Ytterby. Nature Chemistry, 2016, 8, 192-192.	13.6	3
13	A Mechanistic Investigation of the Kinetic Resolution of Secondary Aromatic Alcohols Using a Ferroceneâ€Based Planar Chiral 4â€{Dimethylamino)pyridine Catalyst. Chemistry - A European Journal, 2015, 21, 5623-5631.	3.3	14
14	A Single-Cell Study of a Highly Effective Hog1 Inhibitor for in Situ Yeast Cell Manipulation. Micromachines, 2014, 5, 81-96.	2.9	5
15	Access to Optically Pure β-Hydroxy Esters via Non-Enzymatic Kinetic Resolution by a Planar-Chiral DMAP Catalyst. Molecules, 2014, 19, 14273-14291.	3.8	12
16	Selective inhibition of RET mediated cell proliferation in vitro by the kinase inhibitor SPP86. BMC Cancer, 2014, 14, 853.	2.6	14
17	Kinetic resolution of 2-hydroxy-2-aryl-ethylphosphonates by a non-enzymatic acylation catalyst. Tetrahedron, 2014, 70, 3807-3811.	1.9	7
18	Chiral Sulfinamides as Highly Enantioselective Organocatalysts. ChemCatChem, 2014, 6, 3063-3066.	3.7	24

Peter Dinér

#	Article	IF	CITATIONS
19	Nonâ€Enzymatic Dynamic Kinetic Resolution of Secondary Aryl Alcohols: Planar Chiral Ferrocene and Ruthenium Catalysts in Cooperation. Angewandte Chemie - International Edition, 2013, 52, 502-504.	13.8	17
20	Non-enzymatic kinetic resolution of 1,2-azidoalcohols using a planar-chiral DMAP derivative catalyst. Tetrahedron, 2013, 69, 753-757.	1.9	14
21	Azastilbenes: a cut-off to p38 MAPK inhibitors. Organic and Biomolecular Chemistry, 2013, 11, 4526.	2.8	6
22	Efficient, Low Temperature Production of Hydrogen from Methanol. ChemCatChem, 2013, 5, 2795-2797.	3.7	13
23	Multiâ€faceted Reactivity of Alkyltellurophenols Towards Peroxyl Radicals: Catalytic Antioxidant Versus Thiolâ€Depletion Effect. Chemistry - A European Journal, 2013, 19, 7510-7522.	3.3	62
24	Design and evaluation of a microfluidic system for inhibition studies of yeast cell signaling. Proceedings of SPIE, 2012, , .	0.8	1
25	Superacid-Promoted Ionization of Alkanes Without Carbonium Ion Formation: A Density Functional Theory Study. Journal of Physical Chemistry A, 2012, 116, 9979-9984.	2.5	14
26	Preparation of 3-Substituted-1-Isopropyl-1 <i>H</i> -pyrazolo[3,4- <i>d</i>]pyrimidin-4-amines as RET Kinase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 4872-4876.	6.4	47
27	Design, Synthesis, and Biological Evaluation of Chromone-Based p38 MAP Kinase Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 7427-7431.	6.4	50
28	Characterization of photophysical and base-mimicking properties of a novel fluorescent adenine analogue in DNA. Nucleic Acids Research, 2011, 39, 4513-4524.	14.5	43
29	Design, Synthesis, and Characterization of a Highly Effective Hog1 Inhibitor: A Powerful Tool for Analyzing MAP Kinase Signaling in Yeast. PLoS ONE, 2011, 6, e20012.	2.5	23
30	Catalytic asymmetric chiral lithium amide-promoted epoxide rearrangement: a NMR spectroscopic and kinetic investigation. Tetrahedron: Asymmetry, 2010, 21, 2733-2739.	1.8	12
31	Synthesis and Photophysical Characterisation of Fluorescent 8â€(1 <i>H</i> â€1,2,3â€Triazolâ€4â€yl)adenosine Derivatives. European Journal of Organic Chemistry, 2009, 2009, 1515-1521.	2.4	48
32	Short cut to 1,2,3-triazole-based p38 MAP kinase inhibitorsvia [3+2]-cycloaddition chemistry. New Journal of Chemistry, 2009, 33, 1010-1016.	2.8	32
33	Synthesis of 3-(1,2,3-triazol-1-yl)- and 3-(1,2,3-triazol-4-yl)-substituted pyrazolo[3,4-d]pyrimidin-4-amines via click chemistry: potential inhibitors of the Plasmodium falciparum PfPK7 protein kinase. Organic and Biomolecular Chemistry, 2009, 7, 3421.	2.8	43
34	Synthesis of Chiral 1,4-Disubstituted-1,2,3-Triazole Derivatives from Amino Acids. Molecules, 2009, 14, 5124-5143.	3.8	11
35	On the Origin of the Stereoselectivity in Organocatalysed Reactions with Trimethylsilylâ€Protected Diarylprolinol. Chemistry - A European Journal, 2008, 14, 122-127.	3.3	80
36	Enantioselective hydroxylation of nitroalkenes: an organocatalytic approach. Chemical Communications, 2007, , 3646.	4.1	67

Peter Dinér

#	Article	IF	CITATIONS
37	Asymmetric Organocatalytic Î ² -Hydroxylation of Î \pm ,Î ² -Unsaturated Aldehydes. Journal of the American Chemical Society, 2007, 129, 1536-1537.	13.7	186
38	Enantioselective Organocatalytic Conjugate Addition of Nâ€Heterocycles to α,β-Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2007, 46, 1983-1987.	13.8	180
39	Aminophosphonates as organocatalysts in the direct asymmetric aldol reaction: towards syn selectivity in the presence of Lewis bases. Organic and Biomolecular Chemistry, 2006, 4, 2091-2096.	2.8	74
40	Dienamine Catalysis: Organocatalytic Asymmetric γ-Amination of α,β-Unsaturated Aldehydes. Journal of the American Chemical Society, 2006, 128, 12973-12980.	13.7	380
41	Investigation of site selectivity of the stereoselective deprotonation of cyclohexene oxide using kinetic resolution of isotopic enantiomers in natural abundance. Tetrahedron: Asymmetry, 2005, 16, 2665-2671.	1.8	5
42	Solution structures of chiral lithium amides with internal sulfide coordination: sulfide versus ether coordination in chiral lithium amides. Tetrahedron: Asymmetry, 2004, 15, 267-274.	1.8	28
43	Composition and structure of activated complexes in stereoselective deprotonation of cyclohexene oxide by a mixed dimer of chiral lithium amide and lithiated imidazole. Tetrahedron: Asymmetry, 2004, 15, 1607-1613.	1.8	14
44	Development of Chiral Catalysts for Stereoselective Synthesis by Deprotonations – Experimentation in Interplay with Computational Chemistry. Advances in Quantum Chemistry, 2004, , 1-22.	0.8	1
45	Methane Activation and Oxidation in Sulfuric Acid. Chemistry - A European Journal, 2002, 8, 3277.	3.3	12
46	Solvated CH5+ in Liquid Superacid. Chemistry - A European Journal, 2001, 7, 1936-1943.	3.3	31
47	Solvated CH5+ in Liquid Superacid. Chemistry - A European Journal, 2001, 7, 2501-2501.	3.3	2
48	Nickel Boride Catalyzed Reductions of Nitro Compounds and Azides: Nanocellulose-supported Catalysts in Tandem Reactions. Synthesis, 0, , .	2.3	3