
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8529947/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A clinical approach to diagnosis of autoimmune encephalitis. Lancet Neurology, The, 2016, 15, 391-404.	10.2	2,782
2	MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. Journal of Neuroinflammation, 2016, 13, 280.	7.2	686
3	Antimyelin Antibodies as a Predictor of Clinically Definite Multiple Sclerosis after a First Demyelinating Event. New England Journal of Medicine, 2003, 349, 139-145.	27.0	589
4	Neuromyelitis optica: Pathogenicity of patient immunoglobulin in vivo. Annals of Neurology, 2009, 66, 630-643.	5.3	504
5	Myelin oligodendrocyte glycoprotein antibodies in neurological disease. Nature Reviews Neurology, 2019, 15, 89-102.	10.1	439
6	Overlapping demyelinating syndromes and anti–Nâ€methylâ€Dâ€aspartate receptor encephalitis. Annals of Neurology, 2014, 75, 411-428.	5.3	405
7	Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. Journal of Neuroinflammation, 2011, 8, 184.	7.2	379
8	MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: Frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. Journal of Neuroinflammation, 2016, 13, 279.	7.2	351
9	The spectrum of MOG autoantibody-associated demyelinating diseases. Nature Reviews Neurology, 2013, 9, 455-461.	10.1	330
10	MOG cell-based assay detects non-MS patients with inflammatory neurologic disease. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e89.	6.0	322
11	Antibodies against the myelin oligodendrocyte glycoprotein and the myelin basic protein in multiple sclerosis and other neurological diseases: a comparative study. Brain, 1999, 122, 2047-2056.	7.6	315
12	Prognostic relevance of MOG antibodies in children with an acquired demyelinating syndrome. Neurology, 2017, 89, 900-908.	1.1	278
13	Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurology, The, 2021, 20, 762-772.	10.2	261
14	Antibodies to MOG and AQP4 in adults with neuromyelitis optica and suspected limited forms of the disease. Multiple Sclerosis Journal, 2015, 21, 866-874.	3.0	241
15	Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1005-1015.	1.9	228
16	MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: Afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients. Journal of Neuroinflammation, 2016, 13, 282.	7.2	217
17	MOG-lgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: Brainstem involvement - frequency, presentation and outcome. Journal of Neuroinflammation, 2016, 13, 281.	7.2	202
18	Myelin Oligodendrocyte Glycoprotein: Deciphering a Target in Inflammatory Demyelinating Diseases. Frontiers in Immunology, 2017, 8, 529.	4.8	184

#	Article	IF	CITATIONS
19	Anti–Myelin Oligodendrocyte Glycoprotein Antibodies in Pediatric Patients With Optic Neuritis. Archives of Neurology, 2012, 69, 752-6.	4.5	181
20	Temporal dynamics of anti-MOG antibodies in CNS demyelinating diseases. Clinical Immunology, 2011, 138, 247-254.	3.2	180
21	International multicenter examination of MOG antibody assays. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	180
22	Frequency and syndrome specificity of antibodies to aquaporin-4 in neurological patients with rheumatic disorders. Multiple Sclerosis Journal, 2011, 17, 1067-1073.	3.0	144
23	Patterns of Antibody Binding to Aquaporin-4 Isoforms in Neuromyelitis Optica. PLoS ONE, 2010, 5, e10455.	2.5	137
24	Acute disseminated encephalomyelitis followed by recurrent or monophasic optic neuritis in pediatric patients. Multiple Sclerosis Journal, 2013, 19, 941-946.	3.0	135
25	Children with multiphasic disseminated encephalomyelitis and antibodies to the myelin oligodendrocyte glycoprotein (MOG): Extending the spectrum of MOG antibody positive diseases. Multiple Sclerosis Journal, 2016, 22, 1821-1829.	3.0	128
26	Distinction and Temporal Stability of Conformational Epitopes on Myelin Oligodendrocyte Glycoprotein Recognized by Patients with Different Inflammatory Central Nervous System Diseases. Journal of Immunology, 2013, 191, 3594-3604.	0.8	126
27	Clinical spectrum and IgG subclass analysis of anti-myelin oligodendrocyte glycoprotein antibody-associated syndromes: a multicenter study. Journal of Neurology, 2017, 264, 2420-2430.	3.6	120
28	Cerebrospinal Fluid B Cells Correlate with Early Brain Inflammation in Multiple Sclerosis. PLoS ONE, 2008, 3, e2559.	2.5	113
29	Clinical spectrum associated with MOG autoimmunity in adults: significance of sharing rodent MOG epitopes. Journal of Neurology, 2016, 263, 1349-1360.	3.6	112
30	Treatment of MOG-IgG-associated disorder with rituximab: An international study of 121 patients. Multiple Sclerosis and Related Disorders, 2020, 44, 102251.	2.0	110
31	Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3323-3328.	7.1	105
32	Human antibodies against the myelin oligodendrocyte glycoprotein can cause complement-dependent demyelination. Journal of Neuroinflammation, 2017, 14, 208.	7.2	105
33	Anti-MOG antibodies are frequently associated with steroid-sensitive recurrent optic neuritis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e131.	6.0	98
34	Antibodies to MOG and AQP4 in children with neuromyelitis optica and limited forms of the disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 897-905.	1.9	98
35	Screening for MOG-IgG and 27 other anti-glial and anti-neuronal autoantibodies in â€~pattern II multiple sclerosis' and brain biopsy findings in a MOG-IgG-positive case. Multiple Sclerosis Journal, 2016, 22, 1541-1549.	3.0	96
36	Myelin oligodendrocyte glycoprotein antibodies: How clinically useful are they?. Current Opinion in Neurology, 2017, 30, 295-301.	3.6	92

#	Article	IF	CITATIONS
37	Myelin injury without astrocytopathy in neuroinflammatory disorders with MOG antibodies. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1257-1259.	1.9	89
38	Pathogenic T cell responses against aquaporin 4. Acta Neuropathologica, 2011, 122, 21-34.	7.7	81
39	Relevance of antibodies to myelin oligodendrocyte glycoprotein in CSF of seronegative cases. Neurology, 2019, 93, e1867-e1872.	1.1	80
40	Fulminant demyelinating encephalomyelitis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e175.	6.0	75
41	Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen. Acta Neuropathologica, 2016, 132, 43-58.	7.7	75
42	T cell-activation in neuromyelitis optica lesions plays a role in their formation. Acta Neuropathologica Communications, 2013, 1, 85.	5.2	73
43	Antibodies as biological markers for pathophysiological processes in MS. Journal of Neuroimmunology, 2006, 180, 50-62.	2.3	69
44	MRI of the first event in pediatric acquired demyelinating syndromes with antibodies to myelin oligodendrocyte glycoprotein. Journal of Neurology, 2018, 265, 845-855.	3.6	68
45	Clinical and imaging features of children with autoimmune encephalitis and MOG antibodies. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	67
46	MOG antibody-associated diseases. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e60.	6.0	66
47	ADEM-like presentation, anti-MOG antibodies, and MS pathology: TWO case reports. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e335.	6.0	65
48	Optical coherence tomography in myelin-oligodendrocyte-glycoprotein antibody-seropositive patients: a longitudinal study. Journal of Neuroinflammation, 2019, 16, 154.	7.2	61
49	Long Term Clinical Prognostic Factors in Relapsing-Remitting Multiple Sclerosis: Insights from a 10-Year Observational Study. PLoS ONE, 2016, 11, e0158978.	2.5	56
50	Discontinuation of disease-modifying therapies in multiple sclerosis – Clinical outcome and prognostic factors. Multiple Sclerosis Journal, 2017, 23, 1241-1248.	3.0	56
51	Circulating AQP4-specific auto-antibodies alone can induce neuromyelitis optica spectrum disorder in the rat. Acta Neuropathologica, 2019, 137, 467-485.	7.7	56
52	Neuromyelitis Optica in Austria in 2011: To Bridge the Gap between Neuroepidemiological Research and Practice in a Study Population of 8.4 Million People. PLoS ONE, 2013, 8, e79649.	2.5	55
53	Highly encephalitogenic aquaporin 4-specific T cells and NMO-IgG jointly orchestrate lesion location and tissue damage in the CNS. Acta Neuropathologica, 2015, 130, 783-798.	7.7	55
54	Antimyelin antibodies in clinically isolated syndromes correlate with inflammation in MRI and CSF. Journal of Neurology, 2007, 254, 160-168.	3.6	52

#	Article	IF	CITATIONS
55	Intrastriatal injection of interleukin-1 beta triggers the formation of neuromyelitis optica-like lesions in NMO-IgG seropositive rats. Acta Neuropathologica Communications, 2013, 1, 5.	5.2	52
56	Antimyelin Antibodies with No Progression to Multiple Sclerosis. New England Journal of Medicine, 2007, 356, 426-428.	27.0	50
57	Mechanisms for lesion localization in neuromyelitis optica spectrum disorders. Current Opinion in Neurology, 2018, 31, 325-333.	3.6	48
58	Recent developments in MOG-IgG associated neurological disorders. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628642094513.	3.5	45
59	NMDA receptor antibodies. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e141.	6.0	44
60	Cerebrospinal fluid findings in patients with myelin oligodendrocyte glycoprotein (MOG) antibodies. Part 2: Results from 108 lumbar punctures in 80 pediatric patients. Journal of Neuroinflammation, 2020, 17, 262.	7.2	44
61	Cell-based assays for the detection of MOG antibodies: a comparative study. Journal of Neurology, 2020, 267, 3555-3564.	3.6	44
62	Serum GFAP and NfL as disease severity and prognostic biomarkers in patients with aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder. Journal of Neuroinflammation, 2021, 18, 105.	7.2	44
63	Temporal dynamics of cerebrospinal fluid anti-aquaporin-4 antibodies in patients with neuromyelitis optica spectrum disorders. Journal of Neuroimmunology, 2011, 234, 124-130.	2.3	41
64	Aquaporin 4-specific T cells and NMO-IgG cause primary retinal damage in experimental NMO/SD. Acta Neuropathologica Communications, 2016, 4, 82.	5.2	41
65	Neurofilament light chain serum levels reflect disease severity in MOG-Ab associated disorders. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1293-1296.	1.9	40
66	Potent SARS-CoV-2-Specific T Cell Immunity and Low Anaphylatoxin Levels Correlate With Mild Disease Progression in COVID-19 Patients. Frontiers in Immunology, 2021, 12, 684014.	4.8	37
67	Complement Activation Is a Prominent Feature of <scp>MOGAD</scp> . Annals of Neurology, 2021, 90, 976-982.	5.3	35
68	Prognostic value of free light chains lambda and kappa in early multiple sclerosis. Multiple Sclerosis Journal, 2017, 23, 1496-1505.	3.0	34
69	Epitope specificity of serum antibodies directed against the extracellular domain of myelin oligodendrocyte glycoprotein: Influence of relapses and immunomodulatory treatments. Journal of Neuroimmunology, 2006, 174, 147-156.	2.3	30
70	Tocilizumab treatment in severe recurrent anti-MOG-associated optic neuritis. Neurology, 2019, 92, 765-767.	1.1	30
71	Change of olfactory function as a marker of inflammatory activity and disability progression in MS. Multiple Sclerosis Journal, 2019, 25, 267-274.	3.0	29
72	Neuromyelitis optica spectrum disorders with antibodies to myelin oligodendrocyte glycoprotein or aquaporin-4: Clinical and paraclinical characteristics in Algerian patients. Journal of the Neurological Sciences, 2017, 381, 240-244.	0.6	29

#	Article	IF	CITATIONS
73	Failure of alemtuzumab therapy to control MOG encephalomyelitis. Neurology, 2017, 89, 207-209.	1.1	27
74	CD4+ T-Cell Reactivity to Orexin/Hypocretin in Patients With Narcolepsy Type 1. Sleep, 2017, 40, .	1.1	27
75	Comparison of Diagnostic Accuracy of Microscopy and Flow Cytometry in Evaluating N-Methyl-D-Aspartate Receptor Antibodies in Serum Using a Live Cell-Based Assay. PLoS ONE, 2015, 10, e0122037.	2.5	27
76	Cerebrospinal fluid B cells and disease progression in multiple sclerosis - A longitudinal prospective study. PLoS ONE, 2017, 12, e0182462.	2.5	26
77	Features of intrathecal immunoglobulins in patients with multiple sclerosis. Journal of the Neurological Sciences, 2010, 288, 147-150.	0.6	23
78	Comparative analyses of IgG/IgA neutralizing effects induced by three COVID-19 vaccines against variants of concern. Journal of Allergy and Clinical Immunology, 2022, 149, 1242-1252.e12.	2.9	23
79	An antibody microarray analysis of serum cytokines in neurodegenerative Parkinsonian syndromes. Proteome Science, 2012, 10, 71.	1.7	22
80	Clinical and immunological follow-up of B-cell depleting therapy in CNS demyelinating diseases. Journal of the Neurological Sciences, 2013, 328, 77-82.	0.6	22
81	Role of Autoantibodies in Acquired Inflammatory Demyelinating Diseases of the Central Nervous System in Children. Neuropediatrics, 2013, 44, 297-301.	0.6	22
82	High association of MOG-IgG antibodies in children with bilateral optic neuritis. European Journal of Paediatric Neurology, 2020, 27, 86-93.	1.6	22
83	Age-dependent favorable visual recovery despite significant retinal atrophy in pediatric MOGAD: how much retina do you really need to see well?. Journal of Neuroinflammation, 2021, 18, 121.	7.2	22
84	MOG antibody seropositivity in a patient with encephalitis: beyond the classical syndrome. BMC Neurology, 2017, 17, 190.	1.8	21
85	MOG-expressing teratoma followed by MOG-IgG-positive optic neuritis. Acta Neuropathologica, 2021, 141, 127-131.	7.7	21
86	Nogo-B is associated with cytoskeletal structures in human monocyte-derived macrophages. BMC Research Notes, 2011, 4, 6.	1.4	20
87	Frequency of myelin oligodendrocyte glycoprotein antibodies in a large cohort of neurological patients. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2021, 7, 205521732110227.	1.0	20
88	Serum neurofilament light-chain levels in children with monophasic myelin oligodendrocyte glycoprotein-associated disease, multiple sclerosis, and other acquired demyelinating syndrome. Multiple Sclerosis Journal, 2022, 28, 1553-1561.	3.0	20
89	Antibodies to myelin oligodendrocyte glycoprotein in HIV-1 associated neurocognitive disorder: a cross-sectional cohort study. Journal of Neuroinflammation, 2010, 7, 79.	7.2	18
90	lgLON5 autoimmunity tested negative in patients with progressive supranuclear palsy and corticobasal syndrome. Parkinsonism and Related Disorders, 2017, 38, 102-103.	2.2	18

#	Article	IF	CITATIONS
91	Novel decision algorithm to discriminate parkinsonism with combined blood and imaging biomarkers. Parkinsonism and Related Disorders, 2020, 77, 57-63.	2.2	18
92	T-Cell Specificity Influences Disease Heterogeneity in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	18
93	Antibody response to myelin oligodendrocyte glycoprotein and myelin basic protein depend on familial background and are partially associated with human leukocyte antigen alleles in multiplex families and sporadic multiple sclerosis. Journal of Neuroimmunology, 2002, 131, 201-207.	2.3	17
94	Comparative Analysis of T-Cell Responses to Aquaporin-4 and Myelin Oligodendrocyte Glycoprotein in Inflammatory Demyelinating Central Nervous System Diseases. Frontiers in Immunology, 2020, 11, 1188.	4.8	16
95	Differential Binding of Autoantibodies to MOG Isoforms in Inflammatory Demyelinating Diseases. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	16
96	Nogo-Receptors NgR1 and NgR2 Do Not Mediate Regulation of CD4 T Helper Responses and CNS Repair in Experimental Autoimmune Encephalomyelitis. PLoS ONE, 2011, 6, e26341.	2.5	15
97	Rituximab induces clonal expansion of IgG memory B-cells in patients with inflammatory central nervous system demyelination. Journal of Neuroimmunology, 2016, 290, 49-53.	2.3	15
98	Antibodies to nodal/paranodal proteins in paediatric immune-mediated neuropathy. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	15
99	NfL levels predominantly increase at disease onset in MOG-Abs-associated disorders. Multiple Sclerosis and Related Disorders, 2021, 50, 102833.	2.0	15
100	Experimental Neuromyelitis Optica Induces a Type I Interferon Signature in the Spinal Cord. PLoS ONE, 2016, 11, e0151244.	2.5	15
101	Characterization of the binding pattern of human aquaporin-4 autoantibodies in patients with neuromyelitis optica spectrum disorders. Journal of Neuroinflammation, 2016, 13, 176.	7.2	14
102	Antibodies to MOG in CSF only: pathological findings support the diagnostic value. Acta Neuropathologica, 2021, 141, 801-804.	7.7	14
103	Antibodies to aquaporin-1 are not present in neuromyelitis optica. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e160.	6.0	13
104	Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients. G3: Genes, Genomes, Genetics, 2016, 6, 2073-2079.	1.8	13
105	Age-Dependent Seroprevalence of JCV Antibody in Children. Neuropediatrics, 2016, 47, 112-114.	0.6	11
106	Rethinking the importance of paroxysmal and unusual symptoms as first clinical manifestation of multiple sclerosis: They do matter. Multiple Sclerosis and Related Disorders, 2016, 9, 150-154.	2.0	11
107	New clinical implications of anti-myelin oligodendrocyte glycoprotein antibodies in children with CNS demyelinating diseases. Multiple Sclerosis and Related Disorders, 2018, 22, 35-37.	2.0	11
108	High-salt diet does not boost neuroinflammation and neurodegeneration in a model of α-synucleinopathy. Journal of Neuroinflammation, 2020, 17, 35.	7.2	11

#	Article	IF	CITATIONS
109	Antibody signatures in patients with histopathologically defined multiple sclerosis patterns. Acta Neuropathologica, 2020, 139, 547-564.	7.7	11
110	Distinct serum and cerebrospinal fluid cytokine and chemokine profiles in autoantibody-associated demyelinating diseases. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2019, 5, 205521731984846.	1.0	10
111	Epidemiology of Pediatric NMOSD in Germany and Austria. Frontiers in Neurology, 2020, 11, 415.	2.4	10
112	6-month SARS-CoV-2 antibody persistency in aÂTyrolian COVID-19 cohort. Wiener Klinische Wochenschrift, 2021, 133, 351-358.	1.9	10
113	Antibody responses following induction of antigen-specific tolerance with antigen-coupled cells. Multiple Sclerosis Journal, 2015, 21, 651-655.	3.0	9
114	Impact of glatiramer acetate on paraclinical markers of neuroprotection in multiple sclerosis: A prospective observational clinical trial. Journal of Neuroimmunology, 2015, 287, 98-105.	2.3	8
115	B Cells and Antibodies in MS. Results and Problems in Cell Differentiation, 2009, 51, 99-113.	0.7	7
116	Decreased Frequency of Circulating Myelin Oligodendrocyte Glycoprotein B Lymphocytes in Patients with Relapsing-Remitting Multiple Sclerosis. Journal of Immunology Research, 2015, 2015, 1-12.	2.2	7
117	Periventricular white matter lesion and incomplete MRZ reaction in a male patient with anti-N-methyl-D-aspartate receptor encephalitis presenting with dysphoric mania. BMJ Case Reports, 2015, 2015, bcr2014209075-bcr2014209075.	0.5	7
118	Leptomeningeal and Intraparenchymal Blood Barrier Disruption in a MOG-IgG-Positive Patient. Case Reports in Neurological Medicine, 2018, 2018, 1-3.	0.4	7
119	Predicting therapeutic efficacy of intravenous immunoglobulin (IVIG) in individual patients with relapsing remitting multiple sclerosis (RRMS) by functional genomics. Journal of Neuroimmunology, 2014, 277, 145-152.	2.3	5
120	Methodological Challenges in Protein Microarray and Immunohistochemistry for the Discovery of Novel Autoantibodies in Paediatric Acute Disseminated Encephalomyelitis. International Journal of Molecular Sciences, 2017, 18, 679.	4.1	5
121	Clinical Features and Outcomes of Pediatric Monophasic and Recurrent Idiopathic Optic Neuritis. Journal of Child Neurology, 2020, 35, 77-83.	1.4	5
122	Myasthenic crisis following SARS-CoV-2 infection and delayed virus clearance in a patient treated with rituximab: clinical course and 6-month follow-up. Journal of Neurology, 2020, 268, 2700-2702.	3.6	5
123	Induction of aquaporin 4-reactive antibodies in Lewis rats immunized with aquaporin 4 mimotopes. Acta Neuropathologica Communications, 2020, 8, 49.	5.2	5
124	Diagnostic biomarkers in multiple sclerosis. Expert Opinion on Medical Diagnostics, 2007, 1, 225-233.	1.6	4
125	Clinical course of MOG antibody-associated recurrent demyelinating diseases. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 118-118.	1.9	4
126	Transient MOG antibody seroconversion associated with immunomodulating therapy. Multiple Sclerosis and Related Disorders, 2020, 37, 101420.	2.0	4

#	Article	IF	CITATIONS
127	Presence of anti-neuronal antibodies in children with neurological disorders beyond encephalitis. European Journal of Paediatric Neurology, 2020, 28, 159-166.	1.6	4
128	German translation, cultural adaption and validation of the unidimensional self-efficacy scale for multiple sclerosis: a study protocol. BMJ Open, 2019, 9, e029565.	1.9	3
129	AQP4 autoantibodies in patients with idiopathic normal pressure hydrocephalus. Journal of Neuroimmunology, 2020, 349, 577407.	2.3	3
130	Are aquaporin antibody titers useful outcome measures for neuromyelitis optica spectrum disorders?. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	3
131	Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease and Varicella Zoster Virus Infection - Frequency of an Association. Frontiers in Immunology, 2021, 12, 769653.	4.8	3
132	Anti-thyroid autoantibodies as biomarkers for alemtuzumab associated thyroid autoimmunity. EBioMedicine, 2019, 47, 22-23.	6.1	2
133	German translation, cultural adaptation and validation of the unidimensional self-efficacy scale for multiple sclerosis. BMC Neurology, 2021, 21, 163.	1.8	2
134	Functional Recovery in Autoimmune Encephalitis: A Prospective Observational Study. Frontiers in Immunology, 2021, 12, 641106.	4.8	2
135	Paroxysmal and unusual symptoms as first clinical manifestation of multiple sclerosis do not indicate benign prognosis—The PaSiMS II study. PLoS ONE, 2017, 12, e0181458.	2.5	2
136	Temporal Dynamics of MOG Antibodies in Children with Acquired Demyelinating Syndrome. Neuropediatrics, 2021, 52, .	0.6	2
137	12-month SARS-CoV-2 antibody persistency in aÂTyrolean COVID-19 cohort. Wiener Klinische Wochenschrift, 2021, 133, 1265-1271.	1.9	2
138	Reply to "Investigating the Immunopathogenic Mechanisms Underlying <scp>MOGAD</scp> ― Annals of Neurology, 2022, 91, 300-301.	5.3	2
139	Teaching NeuroImages: Bilateral optic neuritis. Neurology, 2020, 95, e2045-e2046.	1.1	1
140	Immunohistochemistry. , 2015, , 143-158.		1
141	Guilty by association? SARSâ€CoVâ€⊋ antibodies and myelin oligodendrocyte glycoprotein antibodyâ€associated disease. European Journal of Neurology, 2022, , .	3.3	1
142	Widening the spectrum of autoantibodies in pediatric brainstem encephalitis. Developmental Medicine and Child Neurology, 2016, 58, 791-792.	2.1	0
143	Failure of Expected Brain Growth in Children with ADEM. , 2019, 50, .		0