
Rory D. de Vries

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8529887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Durability of Immune Responses After Boosting in Ad26.COV2.S-Primed Healthcare Workers. Clinical Infectious Diseases, 2023, 76, e533-e536.	5.8	7
2	Antibody and T-Cell Responses 6 Months After Coronavirus Disease 2019 Messenger RNA-1273 Vaccination in Patients With Chronic Kidney Disease, on Dialysis, or Living With a Kidney Transplant. Clinical Infectious Diseases, 2023, 76, e188-e199.	5.8	24
3	Understanding the association between sleep, shift work and COVIDâ€19 vaccine immune response efficacy: Protocol of the Sâ€CORE study. Journal of Sleep Research, 2022, 31, e13496.	3.2	14
4	The RECOVAC Immune-response Study: The Immunogenicity, Tolerability, and Safety of COVID-19 Vaccination in Patients With Chronic Kidney Disease, on Dialysis, or Living With a Kidney Transplant. Transplantation, 2022, 106, 821-834.	1.0	127
5	Absence of COVID-19-associated changes in plasma coagulation proteins and pulmonary thrombosis in the ferret model. Thrombosis Research, 2022, 210, 6-11.	1.7	3
6	Immunogenicity and Reactogenicity of Vaccine Boosters after Ad26.COV2.S Priming. New England Journal of Medicine, 2022, 386, 951-963.	27.0	102
7	Divergent SARS-CoV-2 Omicron–reactive T and B cell responses in COVID-19 vaccine recipients. Science Immunology, 2022, 7, eabo2202.	11.9	337
8	Modeling Infection and Tropism of Human Parainfluenza Virus Type 3 in Ferrets. MBio, 2022, 13, e0383121.	4.1	5
9	High torque tenovirus (TTV) load before first vaccine dose is associated with poor serological response to COVID-19 vaccination in lung transplant recipients. Journal of Heart and Lung Transplantation, 2022, 41, 765-772.	0.6	15
10	Immunogenicity of the mRNA-1273 COVID-19 vaccine in adult patients with inborn errors of immunity. Journal of Allergy and Clinical Immunology, 2022, 149, 1949-1957.	2.9	39
11	Repurposing an In Vitro Measles Virus Dissemination Assay for Screening of Antiviral Compounds. Viruses, 2022, 14, 1186.	3.3	4
12	Antigenic cartography of SARS-CoV-2 reveals that Omicron BA.1 and BA.2 are antigenically distinct. Science Immunology, 2022, 7, .	11.9	89
13	Potency of Fusion-Inhibitory Lipopeptides against SARS-CoV-2 Variants of Concern. MBio, 2022, 13, .	4.1	9
14	Pulmonary lesions following inoculation with the SARS-CoV-2 Omicron BA.1 (B.1.1.529) variant in Syrian golden hamsters. Emerging Microbes and Infections, 2022, 11, 1778-1786.	6.5	7
15	Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science, 2021, 371, 1379-1382.	12.6	158
16	Human Respiratory Syncytial Virus Subgroup A and B Infections in Nasal, Bronchial, Small-Airway, and Organoid-Derived Respiratory Cultures. MSphere, 2021, 6, .	2.9	14
17	The RECOVAC IR study: the immune response and safety of the mRNA-1273 COVID-19 vaccine in patients with chronic kidney disease, on dialysis or living with a kidney transplant. Nephrology Dialysis Transplantation, 2021, 36, 1761-1764.	0.7	33
18	SARS-CoV-2 variants of concern partially escape humoral but not T cell responses in COVID-19 convalescent donors and vaccine recipients. Science Immunology, 2021, 6, .	11.9	455

#	Article	IF	CITATIONS
19	Comparable Infection Level and Tropism of Measles Virus and Canine Distemper Virus in Organotypic Brain Slice Cultures Obtained from Natural Host Species. Viruses, 2021, 13, 1582.	3.3	1
20	In Vitro Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells – A Systematic Review. Frontiers in Immunology, 2021, 12, 683002.	4.8	28
21	Seasonal coronavirus–specific B cells with limited SARS-CoV-2 cross-reactivity dominate the IgG response in severe COVID-19. Journal of Clinical Investigation, 2021, 131, .	8.2	49
22	Sustained Replication of Synthetic Canine Distemper Virus Defective Genomes <i>In Vitro</i> and <i>In Vivo</i> . MSphere, 2021, 6, e0053721.	2.9	9
23	Heterologous Ad26.COV2.S Prime and mRNA-Based Boost COVID-19 Vaccination Regimens: The SWITCH Trial Protocol. Frontiers in Immunology, 2021, 12, 753319.	4.8	13
24	Animal models of SARS-CoV-2 transmission. Current Opinion in Virology, 2021, 50, 8-16.	5.4	21
25	Evaluation of a multi-species SARS-CoV-2 surrogate virus neutralization test. One Health, 2021, 13, 100313.	3.4	28
26	Difference in sensitivity between SARS-CoV-2–specific T cell assays in patients with underlying conditions. Journal of Clinical Investigation, 2021, 131, .	8.2	11
27	Analysis of the vaccine-induced influenza B virus hemagglutinin-specific antibody dependent cellular cytotoxicity response. Virus Research, 2020, 277, 197839.	2.2	6
28	SARS-CoV-2-specific T-cells in unexposed humans: presence of cross-reactive memory cells does not equal protective immunity. Signal Transduction and Targeted Therapy, 2020, 5, 224.	17.1	16
29	Identification and Characterization of CD4 ⁺ T Cell Epitopes after Shingrix Vaccination. Journal of Virology, 2020, 94, .	3.4	18
30	mSphere of Influence: Understanding Virus-Host Interactions Requires a Multifaceted Approach. MSphere, 2020, 5, .	2.9	0
31	Human Paramyxovirus Infections Induce T Cells That Cross-React with Zoonotic Henipaviruses. MBio, 2020, 11, .	4.1	4
32	Measles pathogenesis, immune suppression and animal models. Current Opinion in Virology, 2020, 41, 31-37.	5.4	19
33	In vivo comparison of a laboratory-adapted and clinical-isolate-based recombinant human respiratory syncytial virus. Journal of General Virology, 2020, 101, 1037-1046.	2.9	4
34	Phenotype and kinetics of SARS-CoV-2–specific T cells in COVID-19 patients with acute respiratory distress syndrome. Science Immunology, 2020, 5, .	11.9	851
35	Alveolar barrier disruption in varicella pneumonia is associated with neutrophil extracellular trap formation. JCI Insight, 2020, 5, .	5.0	8
36	Measles skin rash: Infection of lymphoid and myeloid cells in the dermis precedes viral dissemination to the epidermis. PLoS Pathogens, 2020, 16, e1008253.	4.7	13

#	Article	IF	CITATIONS
37	Morbillivirus Infections in Non-human Primates: From Humans to Monkeys and Back Again. , 2020, , 205-231.		0
38	Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science, 2019, 366, 599-606.	12.6	294
39	Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. Science Immunology, 2019, 4, .	11.9	98
40	Induction of Cross-Clade Antibody and T-Cell Responses by a Modified Vaccinia Virus Ankara–Based Influenza A(H5N1) Vaccine in a Randomized Phase 1/2a Clinical Trial. Journal of Infectious Diseases, 2018, 218, 614-623.	4.0	25
41	Matrix-Mâ"¢ adjuvant enhances immunogenicity of both protein- and modified vaccinia virus Ankara-based influenza vaccines in mice. Immunologic Research, 2018, 66, 224-233.	2.9	58
42	<i>In Vitro</i> Measles Virus Infection of Human Lymphocyte Subsets Demonstrates High Susceptibility and Permissiveness of both Naive and Memory B Cells. Journal of Virology, 2018, 92, .	3.4	43
43	Primary Human Influenza B Virus Infection Induces Cross-Lineage Hemagglutinin Stalk–Specific Antibodies Mediating Antibody-Dependent Cellular Cytoxicity. Journal of Infectious Diseases, 2018, 217, 3-11.	4.0	31
44	Effects of pre-existing orthopoxvirus-specific immunity on the performance of Modified Vaccinia virus Ankara-based influenza vaccines. Scientific Reports, 2018, 8, 6474.	3.3	18
45	Studies into the mechanism of measles-associated immune suppression during a measles outbreak in the Netherlands. Nature Communications, 2018, 9, 4944.	12.8	83
46	Modeling the measles paradox reveals the importance of cellular immunity in regulating viral clearance. PLoS Pathogens, 2018, 14, e1007493.	4.7	11
47	Avian Influenza A Virus Pandemic Preparedness and Vaccine Development. Vaccines, 2018, 6, 46.	4.4	29
48	Paramyxovirus Infections in Ex Vivo Lung Slice Cultures of Different Host Species. Methods and Protocols, 2018, 1, 12.	2.0	9
49	Influenza virus-specific antibody dependent cellular cytoxicity induced by vaccination or natural infection. Vaccine, 2017, 35, 238-247.	3.8	49
50	Human CD8 ⁺ T Cells Damage Noninfected Epithelial Cells during Influenza Virus Infection <i>In Vitro</i> . American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 536-546.	2.9	40
51	Modified Vaccinia Virus Ankara Preferentially Targets Antigen Presenting Cells In Vitro, Ex Vivo and In Vivo. Scientific Reports, 2017, 7, 8580.	3.3	34
52	Protein and modified vaccinia virus Ankara-based influenza virus nucleoprotein vaccines are differentially immunogenic in BALB/c mice. Clinical and Experimental Immunology, 2017, 190, 19-28.	2.6	7
53	Needle-free delivery of measles virus vaccine to the lower respiratory tract of non-human primates elicits optimal immunity and protection. Npj Vaccines, 2017, 2, 22.	6.0	32
54	Delineating morbillivirus entry, dissemination and airborne transmission by studying in vivo competition of multicolor canine distemper viruses in ferrets. PLoS Pathogens, 2017, 13, e1006371.	4.7	37

#	Article	IF	CITATIONS
55	Measles Virus Host Invasion and Pathogenesis. Viruses, 2016, 8, 210.	3.3	123
56	Increased Protein Degradation Improves Influenza Virus Nucleoprotein-Specific CD8 ⁺ T Cell Activation <i>In Vitro</i> but Not in C57BL/6 Mice. Journal of Virology, 2016, 90, 10209-10219.	3.4	7
57	Viral vector-based influenza vaccines. Human Vaccines and Immunotherapeutics, 2016, 12, 2881-2901.	3.3	44
58	Universal influenza vaccines: a realistic option?. Clinical Microbiology and Infection, 2016, 22, S120-S124.	6.0	15
59	Developing Universal Influenza Vaccines: Hitting the Nail, Not Just on the Head. Vaccines, 2015, 3, 239-262.	4.4	41
60	Virus-specific T cells as correlate of (cross-)protective immunity against influenza. Vaccine, 2015, 33, 500-506.	3.8	121
61	Morbillivirus Infections: An Introduction. Viruses, 2015, 7, 699-706.	3.3	69
62	Universal influenza vaccines, science fiction or soon reality?. Expert Review of Vaccines, 2015, 14, 1299-1301.	4.4	26
63	Induction of Influenza (H5N8) Antibodies by Modified Vaccinia Virus Ankara H5N1 Vaccine. Emerging Infectious Diseases, 2015, 21, 1086-1088.	4.3	16
64	Influenza B viruses: not to be discounted. Future Microbiology, 2015, 10, 1447-1465.	2.0	80
65	Live-Attenuated Measles Virus Vaccine Targets Dendritic Cells and Macrophages in Muscle of Nonhuman Primates. Journal of Virology, 2015, 89, 2192-2200.	3.4	53
66	Measles Immune Suppression: Functional Impairment or Numbers Game?. PLoS Pathogens, 2014, 10, e1004482.	4.7	53
67	Modified Vaccinia Virus Ankara (MVA) as Production Platform for Vaccines against Influenza and Other Viral Respiratory Diseases. Viruses, 2014, 6, 2735-2761.	3.3	106
68	Measles Vaccination of Nonhuman Primates Provides Partial Protection against Infection with Canine Distemper Virus. Journal of Virology, 2014, 88, 4423-4433.	3.4	44
69	Infection of lymphoid tissues in the macaque upper respiratory tract contributes to the emergence of transmissible measles virus. Journal of General Virology, 2013, 94, 1933-1944.	2.9	39
70	Paramyxovirus infections in ex vivo lung slice cultures of different host species. Journal of Virological Methods, 2013, 193, 159-165.	2.1	25
71	Complete Genome Sequence of Phocine Distemper Virus Isolated from a Harbor Seal (Phoca vitulina) during the 1988 North Sea Epidemic. Genome Announcements, 2013, 1, .	0.8	9
72	Measles Virus Infection of Epithelial Cells in the Macaque Upper Respiratory Tract Is Mediated by Subepithelial Immune Cells. Journal of Virology, 2013, 87, 4033-4042.	3.4	59

#	Article	IF	CITATIONS
73	Measles Immune Suppression: Lessons from the Macaque Model. PLoS Pathogens, 2012, 8, e1002885.	4.7	146
74	Recombinant Canine Distemper Virus Strain Snyder Hill Expressing Green or Red Fluorescent Proteins Causes Meningoencephalitis in the Ferret. Journal of Virology, 2012, 86, 7508-7519.	3.4	44
75	Evaluating measles vaccines: can we assess cellular immunity?. Expert Review of Vaccines, 2012, 11, 779-782.	4.4	11
76	The pathogenesis of measles. Current Opinion in Virology, 2012, 2, 248-255.	5.4	90
77	Evaluation of synthetic infection-enhancing lipopeptides as adjuvants for a live-attenuated canine distemper virus vaccine administered intra-nasally to ferrets. Vaccine, 2012, 30, 5073-5080.	3.8	8
78	A Prominent Role for DC-SIGN+ Dendritic Cells in Initiation and Dissemination of Measles Virus Infection in Non-Human Primates. PLoS ONE, 2012, 7, e49573.	2.5	35
79	Human Langerhans cells capture measles virus through Langerin and present viral antigens to CD4 ⁺ T cells but are incapable of crossâ€presentation. European Journal of Immunology, 2011, 41, 2619-2631.	2.9	85
80	Early Target Cells of Measles Virus after Aerosol Infection of Non-Human Primates. PLoS Pathogens, 2011, 7, e1001263.	4.7	181
81	Specific CD8 ⁺ Tâ€lymphocytes control dissemination of measles virus. European Journal of Immunology, 2010, 40, 388-395.	2.9	29
82	<i>In Vivo</i> Tropism of Attenuated and Pathogenic Measles Virus Expressing Green Fluorescent Protein in Macaques. Journal of Virology, 2010, 84, 4714-4724.	3.4	95
83	Acyclovir Susceptibility and Genetic Characteristics of Sequential Herpes Simplex Virus Type 1 Corneal Isolates from Patients with Recurrent Herpetic Keratitis. Journal of Infectious Diseases, 2009, 200, 1402-1414.	4.0	95
84	Measles vaccination: new strategies and formulations. Expert Review of Vaccines, 2008, 7, 1215-1223.	4.4	23
85	DC-SIGN and CD150 Have Distinct Roles in Transmission of Measles Virus from Dendritic Cells to T-Lymphocytes. PLoS Pathogens, 2008, 4, e1000049.	4.7	82
86	Acyclovirâ€Resistant Corneal HSVâ€1 Isolates from Patients with Herpetic Keratitis. Journal of Infectious Diseases, 2008, 198, 659-663.	4.0	137