
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8529813/publications.pdf Version: 2024-02-01

IEDDY D COHEN

#	Article	IF	CITATIONS
1	Biphasic control of cell expansion by auxin coordinates etiolated seedling development. Science Advances, 2022, 8, eabj1570.	4.7	19
2	Differential physiological and metabolic responses in young and fully expanded leaves of Aristotelia chilensis plants subjected to drought stress. Environmental and Experimental Botany, 2022, 196, 104814.	2.0	4
3	Metabolic signatures of Arabidopsis thaliana abiotic stress responses elucidate patterns in stress priming, acclimation, and recovery. Stress Biology, 2022, 2, 1.	1.5	12
4	Complexity of the auxin biosynthetic network in Arabidopsis hypocotyls is revealed by multiple stable-labeled precursors. Phytochemistry, 2022, 200, 113219.	1.4	5
5	Protocol: analytical methods for visualizing the indolic precursor network leading to auxin biosynthesis. Plant Methods, 2021, 17, 63.	1.9	8
6	Indole-3-acetylaspartate and indole-3-acetylglutamate, the IAA-amide conjugates in the diploid strawberry achene, are hydrolyzed in growing seedlings. Planta, 2019, 249, 1073-1085.	1.6	14
7	Abscisic acid is involved in phenolic compounds biosynthesis, mainly anthocyanins, in leaves of <i>Aristotelia chilensis</i> plants (Mol.) subjected to drought stress. Physiologia Plantarum, 2019, 165, 855-866.	2.6	45
8	Age-related mechanism and its relationship with secondary metabolism and abscisic acid in Aristotelia chilensis plants subjected to drought stress. Plant Physiology and Biochemistry, 2018, 124, 136-145.	2.8	45
9	Direct detection of surface localized specialized metabolites from Glycyrrhiza lepidota (American) Tj ETQq1 1 0	784314 rg 1.6	gBT {Overlock
10	Leaf Spray Mass Spectrometry: A Rapid Ambient Ionization Technique to Directly Assess Metabolites from Plant Tissues. Journal of Visualized Experiments, 2018, , .	0.2	4
11	High Enrichment [13 C]‣abeling of Plants Grown Hydroponically from Seed to Seed in a Controlled 13 Câ€Carbon Dioxide Atmosphere Enclosure. Current Protocols in Plant Biology, 2018, 3, e20069.	2.8	2
12	Auxin analysis using laser microdissected plant tissues sections. BMC Plant Biology, 2018, 18, 133.	1.6	4
13	Metabolic Patterns in Spirodela polyrhiza Revealed by 15N Stable Isotope Labeling of Amino Acids in Photoautotrophic, Heterotrophic, and Mixotrophic Growth Conditions. Frontiers in Chemistry, 2018, 6, 191.	1.8	9
14	3-Acyl dihydroflavonols from poplar resins collected by honey bees are active against the bee pathogens Paenibacillus larvae and Ascosphaera apis. Phytochemistry, 2017, 138, 83-92.	1.4	23
15	An improved method for fast and selective separation of carotenoids by LC–MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1067, 34-37.	1.2	14
16	Extraction, purification, methylation and GC–MS analysis of short-chain carboxylic acids for metabolic flux analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1028, 165-174.	1.2	4
17	Conversion of Indole-3-Butyric Acid to Indole-3-Acetic Acid in Shoot Tissue of Hazelnut (Corylus) and Elm (Ulmus). Journal of Plant Growth Regulation, 2016, 35, 710-721.	2.8	24
18	Proteome Scale-Protein Turnover Analysis Using High Resolution Mass Spectrometric Data from Stable-Isotope Labeled Plants. Journal of Proteome Research, 2016, 15, 851-867.	1.8	33

#	Article	IF	CITATIONS
19	Analytical History of Auxin. Journal of Plant Growth Regulation, 2015, 34, 708-722.	2.8	18
20	Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport. Molecular Plant, 2015, 8, 1350-1365.	3.9	85
21	Quantitative evaluation of IAA conjugate pools in Arabidopsis thaliana. Planta, 2015, 241, 539-548.	1.6	12
22	Regional variation in composition and antimicrobial activity of US propolis against Paenibacillus larvae and Ascosphaera apis. Journal of Invertebrate Pathology, 2015, 124, 44-50.	1.5	65
23	Auxin Input Pathway Disruptions Are Mitigated by Changes in Auxin Biosynthetic Gene Expression in Arabidopsis Â. Plant Physiology, 2014, 165, 1092-1104.	2.3	47
24	The shifting paradigms of auxin biosynthesis. Trends in Plant Science, 2014, 19, 44-51.	4.3	148
25	A facile means for the identification of indolic compounds from plant tissues. Plant Journal, 2014, 79, 1065-1075.	2.8	26
26	Regioselective solvent-phase deuteration of polyphenolic compounds informs their identification by mass spectrometry. Analytical Biochemistry, 2014, 452, 76-85.	1.1	6
27	Targeted Deuteration of Polyphenolics for Their Qualitative and Quantitative Metabolomic Analysis in Plant-Derived Extracts. Methods in Molecular Biology, 2014, 1083, 17-29.	0.4	2
28	Auxin producing nonâ€heterocystous Cyanobacteria and their impact on the growth and endogenous auxin homeostasis of wheat. Journal of Basic Microbiology, 2013, 53, 996-1003.	1.8	46
29	<i>Unifoliataâ€Afila</i> interactions in pea leaf morphogenesis. American Journal of Botany, 2013, 100, 478-495.	0.8	13
30	Development of a Simple, Fast, and Accurate Method for the Direct Quantification of Selective Estrogen Receptor Modulators Using Stable Isotope Dilution Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2013, 61, 7028-7037.	2.4	6
31	LEAFY Controls Auxin Response Pathways in Floral Primordium Formation. Science Signaling, 2013, 6, ra23.	1.6	69
32	ROOT ULTRAVIOLET B-SENSITIVE1/WEAK AUXIN RESPONSE3 Is Essential for Polar Auxin Transport in Arabidopsis Â. Plant Physiology, 2013, 162, 965-976.	2.3	24
33	Metabolomics Reveals the Origins of Antimicrobial Plant Resins Collected by Honey Bees. PLoS ONE, 2013, 8, e77512.	1.1	69
34	Transport of Indole-3-Butyric Acid and Indole-3-Acetic Acid in Arabidopsis Hypocotyls Using Stable Isotope Labeling Â. Plant Physiology, 2012, 158, 1988-2000.	2.3	38
35	Easy and accurate calculation of programmed temperature gas chromatographic retention times by back-calculation of temperature and hold-up time profiles. Journal of Chromatography A, 2012, 1263, 179-188.	1.8	19
36	Qualitative and Quantitative Screening of Amino Acids in Plant Tissues. Methods in Molecular Biology, 2012, 918, 165-178.	0.4	3

#	Article	IF	CITATIONS
37	Protocol: High-throughput and quantitative assays of auxin and auxin precursors from minute tissue samples. Plant Methods, 2012, 8, 31.	1.9	70
38	Seasonal variation in glucosinolate accumulation in turnips grown under photoselective nettings. Horticulture Environment and Biotechnology, 2012, 53, 108-115.	0.7	12
39	The endoplasmic reticulum localized PIN8 is a pollenâ€specific auxin carrier involved in intracellular auxin homeostasis. Plant Journal, 2012, 71, 860-870.	2.8	140
40	Easy and accurate high-performance liquid chromatography retention prediction with different gradients, flow rates, and instruments by back-calculation of gradient and flow rate profiles. Journal of Chromatography A, 2011, 1218, 6742-6749.	1.8	44
41	A study on retention "projection―as a supplementary means for compound identification by liquid chromatography–mass spectrometry capable of predicting retention with different gradients, flow rates, and instruments. Journal of Chromatography A, 2011, 1218, 6732-6741.	1.8	53
42	An automated growth enclosure for metabolic labeling of Arabidopsis thaliana with 13C-carbon dioxide - an in vivo labeling system for proteomics and metabolomics research. Proteome Science, 2011, 9, 9.	0.7	37
43	Redirection of tryptophan metabolism in tobacco by ectopic expression of an Arabidopsis indolic glucosinolate biosynthetic gene. Phytochemistry, 2011, 72, 37-48.	1.4	27
44	Multiple Facets of <i>Arabidopsis</i> Seedling Development Require  Indole-3-Butyric Acid–Derived Auxin. Plant Cell, 2011, 23, 984-999.	3.1	149
45	Arabidopsis Monothiol Glutaredoxin, AtGRXS17, Is Critical for Temperature-dependent Postembryonic Growth and Development via Modulating Auxin Response. Journal of Biological Chemistry, 2011, 286, 20398-20406.	1.6	118
46	Auxin-induced leaf blade expansion in Arabidopsis requires both wounding and detachment. Plant Signaling and Behavior, 2011, 6, 1997-2007.	1.2	8
47	PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20231-20235.	3.3	562
48	Low-Fluence Red Light Increases the Transport and Biosynthesis of Auxin Â. Plant Physiology, 2011, 157, 891-904.	2.3	60
49	<i>vanishing tassel2</i> Encodes a Grass-Specific Tryptophan Aminotransferase Required for Vegetative and Reproductive Development in Maize À Â. Plant Cell, 2011, 23, 550-566.	3.1	246
50	Seasonal Variation in Glucosinolate Accumulation in Turnip Cultivars Grown with Colored Plastic Mulches. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 1608-1614.	0.5	11
51	A Putative RNA-Binding Protein Positively Regulates Salicylic Acid–Mediated Immunity in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2010, 23, 1573-1583.	1.4	45
52	Evidence of 4-Cl-IAA and IAA Bound to Proteins in Pea Fruit and Seeds. Journal of Plant Growth Regulation, 2010, 29, 184-193.	2.8	14
53	An Inhibitor of Tryptophan-Dependent Biosynthesis of Indole-3-Acetic Acid Alters Seedling Development in Arabidopsis. Journal of Plant Growth Regulation, 2010, 29, 242-248.	2.8	7
54	Microscale analysis of amino acids using gas chromatography–mass spectrometry after methyl chloroformate derivatization. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 2199-2208.	1.2	50

#	Article	IF	CITATIONS
55	Measuring the turnover rates of Arabidopsis proteins using deuterium oxide: an auxin signaling case study. Plant Journal, 2010, 63, 680-695.	2.8	44
56	The Arabidopsis P450 protein CYP82C2 modulates jasmonate-induced root growth inhibition, defense gene expression and indole glucosinolate biosynthesis. Cell Research, 2010, 20, 539-552.	5.7	58
57	Genetic dissection of the role of ethylene in regulating auxin-dependent lateral and adventitious root formation in tomato. Plant Journal, 2010, 61, 3-15.	2.8	230
58	A high-throughput method for the quantitative analysis of auxins. Nature Protocols, 2010, 5, 1609-1618.	5.5	68
59	A method for concurrent diazomethane synthesis and substrate methylation in a 96-sample format. Nature Protocols, 2010, 5, 1619-1626.	5.5	21
60	<i>Arabidopsis ROOT UVB SENSITIVE2/WEAK AUXIN RESPONSE1</i> Is Required for Polar Auxin Transport Â. Plant Cell, 2010, 22, 1749-1761.	3.1	40
61	Conversion of Endogenous Indole-3-Butyric Acid to Indole-3-Acetic Acid Drives Cell Expansion in Arabidopsis Seedlings Â. Plant Physiology, 2010, 153, 1577-1586.	2.3	162
62	Plant Hormones. , 2010, , 9-125.		6
63	Auxin Biosynthesis and Metabolism. , 2010, , 36-62.		59
64	Outcomes of day-1, day-3, and blastocyst cryopreserved embryo transfers. Fertility and Sterility, 2010, 93, 1353-1355.	0.5	14
65	<i>Arabidopsis ASA1</i> Is Important for Jasmonate-Mediated Regulation of Auxin Biosynthesis and Transport during Lateral Root Formation Â. Plant Cell, 2009, 21, 1495-1511.	3.1	312
66	Arabidopsis <i>IAR4</i> Modulates Auxin Response by Regulating Auxin Homeostasis. Plant Physiology, 2009, 150, 748-758.	2.3	59
67	Arabidopsis CaM Binding Protein CBP60g Contributes to MAMP-Induced SA Accumulation and Is Involved in Disease Resistance against Pseudomonas syringae. PLoS Pathogens, 2009, 5, e1000301.	2.1	242
68	BARREN INFLORESCENCE2 Interaction with ZmPIN1a Suggests a Role in Auxin Transport During Maize Inflorescence Development. Plant and Cell Physiology, 2009, 50, 652-657.	1.5	67
69	Heterologous expression of IAP1, a seed protein from bean modified by indole-3-acetic acid, in Arabidopsis thaliana and Medicago truncatula. Planta, 2008, 227, 1047-1061.	1.6	13
70	A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue. Analytical Biochemistry, 2008, 372, 177-188.	1.1	91
71	Interplay between MAMPâ€triggered and SAâ€mediated defense responses. Plant Journal, 2008, 53, 763-775.	2.8	318
72	Role of coculture in human in vitro fertilization: a meta-analysis. Fertility and Sterility, 2008, 90, 1069-1076.	0.5	48

#	Article	IF	CITATIONS
73	The Genetic Network Controlling the <i>Arabidopsis</i> Transcriptional Response to <i>Pseudomonas syringae</i> pv. <i>maculicola</i> : Roles of Major Regulators and the Phytotoxin Coronatine. Molecular Plant-Microbe Interactions, 2008, 21, 1408-1420.	1.4	64
74	<i>Pseudomonas syringae</i> type III effector AvrRpt2 alters <i>Arabidopsis thaliana</i> auxin physiology. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20131-20136.	3.3	349
75	Changes in Gluconasturtiin Concentration in Chinese Cabbage with Increasing Cabbage Looper Density. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 1337-1340.	0.5	10
76	The Effect of Temperature, Photoperiod, and Light Quality on Gluconasturtiin Concentration in Watercress (Nasturtium officinaleR. Br.). Journal of Agricultural and Food Chemistry, 2006, 54, 328-334.	2.4	113
77	Analysis of Four-Way Two-Dimensional Liquid Chromatography-Diode Array Data:Â Application to Metabolomics. Analytical Chemistry, 2006, 78, 5559-5569.	3.2	102
78	Fast, comprehensive online two-dimensional high performance liquid chromatography through the use of high temperature ultra-fast gradient elution reversed-phase liquid chromatography. Journal of Chromatography A, 2006, 1122, 123-137.	1.8	160
79	Indole-3-Acetic Acid Protein Conjugates: Novel Players in Auxin Homeostasis. Plant Biology, 2006, 8, 340-345.	1.8	64
80	Strawberry fruit protein with a novel indole-acyl modification. Planta, 2006, 224, 1015-1022.	1.6	23
81	A highly potent and selective farnesyltransferase inhibitor ABT-100 in preclinical studies. Anti-Cancer Drugs, 2005, 16, 1059-1069.	0.7	7
82	Aminoethyl-substituted indole-3-acetic acids for the preparation of tagged and carrier-linked auxin. Bioorganic and Medicinal Chemistry, 2005, 13, 3229-3240.	1.4	7
83	Design and synthesis of o-trifluoromethylbiphenyl substituted 2-amino-nicotinonitriles as inhibitors of farnesyltransferase. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 153-158.	1.0	16
84	Design, synthesis, and activity of achiral analogs of 2-quinolones and indoles as non-thiol farnesyltransferase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2033-2039.	1.0	32
85	Benzimidazolones and indoles as non-thiol farnesyltransferase inhibitors based on tipifarnib scaffold: synthesis and activity. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2918-2922.	1.0	67
86	Overexpression of Maize IAGLU in Arabidopsis thaliana Alters Plant Growth and Sensitivity to IAA but not IBA and 2,4-D. Journal of Plant Growth Regulation, 2005, 24, 127-141.	2.8	28
87	Transgenic Tomato Plants with a Modified Ability to Synthesize Indole-3-acetyl-β-1-O-D -glucose. Journal of Plant Growth Regulation, 2005, 24, 142-152.	2.8	17
88	Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development (Cambridge), 2005, 132, 4107-4118.	1.2	608
89	Changes in Gluconasturtiin Content in Chinese Cabbage with Increasing Cabbage Looper Density. Hortscience: A Publication of the American Society for Hortcultural Science, 2005, 40, 1118A-1118.	0.5	0
90	Did auxin play a crucial role in the evolution of novel body plans during the Late Silurian-Early		16

Devonian radiation of land plants?. , 2004, , 85-107.

#	Article	IF	CITATIONS
91	His-404 and His-405 are Essential for Enzyme Catalytic Activities of a Bacterial Indole-3-Acetyl-l-Aspartic Acid Hydrolase. Plant and Cell Physiology, 2004, 45, 1335-1341.	1.5	11
92	Long-Term Inhibition by Auxin of Leaf Blade Expansion in Bean and Arabidopsis. Plant Physiology, 2004, 134, 1217-1226.	2.3	44
93	Synthesis and activity of 1-aryl-1′-imidazolyl methyl ethers as non-thiol farnesyltransferase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5371-5376.	1.0	13
94	Synthesis of[13C]-isotopomers of indole and tryptophan for use in the analysis of indole-3-acetic acid biosynthesis. Journal of Labelled Compounds and Radiopharmaceuticals, 2004, 47, 635-646.	0.5	5
95	Synthesis and biological evaluation of 1-benzyl-5-(3-biphenyl-2-yl-propyl)-1H-imidazole as novel farnesyltransferase inhibitor. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5057-5062.	1.0	13
96	Synthesis and biological evaluation of 4-[(3-Methyl-3 H) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 547 Td (-imidazol-4 Bioorganic and Medicinal Chemistry Letters, 2003, 13, 3821-3825.	-yl)-(2-phe 1.0	nylethynyl-b 5
97	Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis. Trends in Plant Science, 2003, 8, 197-199.	4.3	92
98	Indole-3-Acetic Acid Metabolism in Lemna gibbaUndergoes Dynamic Changes in Response to Growth Temperature. Plant Physiology, 2002, 128, 1410-1416.	2.3	55
99	A gene encoding a protein modified by the phytohormone indoleacetic acid. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1718-1723.	3.3	70
100	Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. , 2002, , 249-272.		13
101	An auxin surge following fertilization in carrots: a mechanism for regulating plant totipotency. Planta, 2002, 214, 505-509.	1.6	67
102	Identification and quantification of three active auxins in different tissues of Tropaeolum majus. Physiologia Plantarum, 2002, 115, 320-329.	2.6	64
103	Evolutionary patterns in auxin action. Plant Molecular Biology, 2002, 49, 319-338.	2.0	157
104	Title is missing!. Plant Molecular Biology, 2002, 49, 249-272.	2.0	145
105	Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology, 2002, 50, 309-332.	2.0	191
106	Title is missing!. Plant Growth Regulation, 2002, 36, 201-207.	1.8	47
107	Title is missing!. Plant Growth Regulation, 2002, 37, 241-248.	1.8	2
108	The biosynthetic pathway for indole-3-acetic acid changes during tomato fruit development. Plant Growth Regulation, 2002, 38, 15-20.	1.8	29

#	Article	IF	CITATIONS
109	Evolutionary patterns in auxin action. , 2002, , 319-338.		8
110	Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Molecular Biology, 2002, 49, 249-72.	2.0	70
111	Evolutionary patterns in auxin action. Plant Molecular Biology, 2002, 49, 319-38.	2.0	65
112	A Role for Flavin Monooxygenase-Like Enzymes in Auxin Biosynthesis. Science, 2001, 291, 306-309.	6.0	1,075
113	Evolutionary Patterns in the Auxin Metabolism of Green Plants. International Journal of Plant Sciences, 2000, 161, 849-859.	0.6	61
114	Auxin metabolism in mosses and liverworts. American Journal of Botany, 1999, 86, 1544-1555.	0.8	60
115	An in Vitro System from Maize Seedlings for Tryptophan-Independent Indole-3-Acetic Acid Biosynthesis1. Plant Physiology, 1999, 119, 173-178.	2.3	60
116	GC-SIM-MS DETECTION AND QUANTIFICATION OF FREE INDOLE-3-ACETIC ACID IN BACTERIAL GALLS ON THE MARINE ALGA PRIONITIS LANCEOLATA (RHODOPHYTA). Journal of Phycology, 1999, 35, 493-500.	1.0	39
117	Structural characterization and auxin properties of dichlorinated indole-3-acetic acids. Plant Growth Regulation, 1999, 27, 21-31.	1.8	7
118	Title is missing!. Plant Growth Regulation, 1999, 27, 57-62.	1.8	20
119	Title is missing!. Plant Growth Regulation, 1999, 27, 139-144.	1.8	39
120	Selective Isolation of Bacterial Antagonists of Botrytis cinerea. European Journal of Plant Pathology, 1999, 105, 95-101.	0.8	14
121	Indole glucosinolate and auxin biosynthesis in Arabidopsis thaliana (L.) Heynh. glucosinolate mutants and the development of clubroot disease. Planta, 1999, 208, 409-419.	1.6	100
122	Auxin. New Comprehensive Biochemistry, 1999, , 115-140.	0.1	34
123	Red-light-regulated growth. Planta, 1998, 204, 207-211.	1.6	27
124	The gene for indole-3-acetyl-L-aspartic acid hydrolase from Enterobacter agglomerans : molecular cloning, nucleotide sequence, and expression in Escherichia coli. Molecular Genetics and Genomics, 1998, 259, 172-178.	2.4	35
125	Continuous light alters indole-3-acetic acid metabolism in lemna gibba. Phytochemistry, 1998, 49, 17-21.	1.4	9
126	A microtechnique for the analysis of free and conjugated indole-3-acetic acid in milligram amounts of plant tissue using a benchtop gas chromatograph-mass spectrometer. Planta, 1997, 204, 1-7.	1.6	31

#	Article	IF	CITATIONS
127	4-chloroindole-3-acetic and indole-3-acetic acids in Pisum sativum. Phytochemistry, 1997, 46, 675-681.	1.4	44
128	In vitro Tomato Fruit Cultures Demonstrate a Role for Indole-3-acetic Acid in Regulating Fruit Ripening. Journal of the American Society for Horticultural Science, 1996, 121, 520-524.	0.5	51
129	Structural studies on monohalogenated derivatives of the phytohormone indole-3-acetic acid (auxin). Acta Crystallographica Section B: Structural Science, 1996, 52, 332-343.	1.8	18
130	Structural studies on monofluorinated derivatives of the phytohormone indole-3-acetic acid (auxin). Acta Crystallographica Section B: Structural Science, 1996, 52, 651-661.	1.8	10
131	Indole-3-acetic acid, ethylene, and abscisic acid metabolism in developing muskmelon (Cucumis melo L.) fruit. Plant Growth Regulation, 1996, 19, 45-54.	1.8	22
132	Quantification of Free Plus Conjugated Indoleacetic Acid in Arabidopsis Requires Correction for the Nonenzymatic Conversion of Indolic Nitriles. Plant Physiology, 1996, 111, 781-788.	2.3	67
133	An Ethylene-Mediated Increase in Sensitivity to Auxin Induces Adventitious Root Formation in Flooded Rumex palustris Sm. Plant Physiology, 1996, 112, 1687-1692.	2.3	173
134	Auxins and polyamines in relation to differential in vitro root induction on microcuttings of two pear cultivars. Journal of Plant Growth Regulation, 1995, 14, 49-59.	2.8	37
135	Auxin metabolism in representative land PLANTS. American Journal of Botany, 1995, 82, 1514-1521.	0.8	72
136	Rethinking Auxin Biosynthesis and Metabolism. Plant Physiology, 1995, 107, 323-329.	2.3	200
137	Auxin Biosynthesis and Metabolism. , 1995, , 39-65.		114
138	Auxin metabolism in representative land PLANTS. , 1995, 82, 1514.		30
139	The Role of Auxin in Plant Embryogenesis. Plant Cell, 1993, 5, 1494.	3.1	14
140	AUXIN METABOLISM IN RELATION TO FRUIT RIPENING. Acta Horticulturae, 1993, , 84-89.	0.1	9
141	Comparison of Benzyl Adenine Metabolism in Two <i>Petunia hybrida</i> Lines Differing in Shoot Organogenesis. Plant Physiology, 1992, 98, 1035-1041.	2.3	36
142	Regulation of Indole-3-Acetic Acid Biosynthetic Pathways in Carrot Cell Cultures. Plant Physiology, 1992, 100, 1346-1353.	2.3	198
143	Auxin Biosynthesis during Seed Germination in <i>Phaseolus vulgaris</i> . Plant Physiology, 1992, 100, 509-517.	2.3	96
144	Measurement of Indolebutyric Acid in Plant Tissues by Isotope Dilution Gas Chromatography-Mass Spectrometry Analysis. Plant Physiology, 1992, 99, 1719-1722.	2.3	54

#	Article	IF	CITATIONS
145	Amide-Linked Indoleacetic Acid Conjugates May Control Levels of Indoleacetic Acid in Germinating Seedlings of Phaseolus vulgaris. Plant Physiology, 1992, 100, 2002-2007.	2.3	40
146	Uptake and metabolism of benzyladenine during shoot organogenesis in Petunia leaf explants. Plant Growth Regulation, 1992, 11, 105-114.	1.8	19
147	Rapid determination of free tryptophan in plant samples by gas chromatography-selected ion monitoring mass spectrometry. Journal of Chromatography A, 1992, 596, 294-298.	1.8	15
148	Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry, 1992, 31, 1097-1103.	1.4	192
149	Stable isotope techniques for the analysis of indole auxin metabolism in normal and mutant plants. Current Plant Science and Biotechnology in Agriculture, 1992, , 859-873.	0.0	Ο
150	Indole-3-Acetic Acid Biosynthesis in the Mutant Maize orange pericarp, a Tryptophan Auxotroph. Science, 1991, 254, 998-1000.	6.0	240
151	Indole-3-acetic acid and indole-3-acetylaspartic acid isolated from seeds of Heracleum laciniatum Horn. Plant Growth Regulation, 1991, 10, 95-101.	1.8	11
152	Stable Isotope Labeling, <i>in Vivo</i> , of d- and l-Tryptophan Pools in <i>Lemna gibba</i> and the Low Incorporation of Label into Indole-3-Acetic Acid. Plant Physiology, 1991, 95, 1203-1208.	2.3	94
153	Red Light-Regulated Growth. Plant Physiology, 1991, 97, 352-358.	2.3	88
154	PHYTOHORMONE ANALYSIS WHAT DO THE NUMBERS MEAN?. Hortscience: A Publication of the American Society for Hortcultural Science, 1990, 25, 1176c-1176.	0.5	0
155	BENZYL ADENINE UPTAKE AND METABOLISM DURING PETUNIA SHOOT ORGANOGENESIS. Hortscience: A Publication of the American Society for Hortcultural Science, 1990, 25, 1138c-1138.	0.5	Ο
156	Hydrolysis of Indole-3-Acetic Acid Esters Exposed to Mild Alkaline Conditions. Plant Physiology, 1989, 91, 9-12.	2.3	24
157	Quantitation of Indoleacetic Acid Conjugates in Bean Seeds by Direct Tissue Hydrolysis. Plant Physiology, 1989, 90, 398-400.	2.3	58
158	Free and Conjugated Indole-3-Acetic Acid in Developing Bean Seeds. Plant Physiology, 1989, 91, 775-779.	2.3	54
159	Identification of indole-3-butyric acid as an endogenous constituent of maize kernels and leaves. Plant Growth Regulation, 1989, 8, 215-223.	1.8	45
160	Microscale isolation technique for quantitative gas chromatography-mass spectrometry analysis of indole-3-acetic acid from cherry (prunus cerasus l.). Journal of Chromatography A, 1988, 442, 301-306.	1.8	12
161	Levels of Indole-3-Acetic Acid in <i>Lemna gibba</i> G-3 and in a Large <i>Lemna</i> Mutant Regenerated from Tissue Culture. Plant Physiology, 1988, 86, 522-526.	2.3	39
162	A Rapid and Simple Procedure for Purification of Indole-3-Acetic Acid Prior to GC-SIM-MS Analysis. Plant Physiology, 1988, 86, 822-825.	2.3	178

#	Article	IF	CITATIONS
163	Investigations on the Nature of the Auxin-Wave in the Cambial Region of Pine Stems. Plant Physiology, 1987, 84, 135-143.	2.3	27
164	Comparison of a Commercial ELISA Assay for Indole-3-Acetic Acid at Several Stages of Purification and Analysis by Gas Chromatography-Selected Ion Monitoring-Mass Spectrometry Using a ¹³ C ₆ -Labeled Internal Standard. Plant Physiology, 1987, 84, 982-986.	2.3	45
165	Measurement of Indole-3-Acetic Acid in Peach Fruits (Prunus persica L. Batsch cv Redhaven) during Development. Plant Physiology, 1987, 84, 491-494.	2.3	105
166	Isolation and Partial Characterization of the Major Amide-Linked Conjugate of Indole-3-Acetic Acid from <i>Phaseolus vulgaris</i> L. Plant Physiology, 1986, 80, 99-104.	2.3	89
167	Endogenous Auxin and Ethylene in the Lichen <i>Ramalina duriaei</i> . Plant Physiology, 1986, 82, 1122-1125.	2.3	50
168	¹³ C ₆ -[Benzene Ring]-Indole-3-Acetic Acid. Plant Physiology, 1986, 80, 14-19.	2.3	246
169	Identification of Indole-3-Acetylglutamate from Seeds of Glycine max L. Plant Physiology, 1986, 80, 256-258.	2.3	42
170	Synthesis of 14C-labeled halogen substituted indole-3-acetic acids. Journal of Labelled Compounds and Radiopharmaceuticals, 1985, 22, 279-285.	0.5	7
171	A Technique for Collection of Exudate from Pea Seedlings. Plant Physiology, 1985, 78, 734-738.	2.3	17
172	Strongly Acidic Auxin Indole-3-Methanesulfonic Acid. Plant Physiology, 1985, 77, 195-199.	2.3	12
173	Convenient apparatus for the generation of small amounts of diazomethane. Journal of Chromatography A, 1984, 303, 193-196.	1.8	146
174	Investigations on the Mechanism of the Brassinosteroid Response. Plant Physiology, 1983, 72, 691-694.	2.3	68
175	Indole-3-acetic Acid (IAA) and IAA Conjugates Applied to Bean Stem Sections. Plant Physiology, 1983, 73, 130-134.	2.3	98
176	Identification and Quantitative Analysis of Indole-3-Acetyl-l-Aspartate from Seeds of Glycine max L Plant Physiology, 1982, 70, 749-753.	2.3	81
177	Chemistry and Physiology of the Bound Auxins. Annual Review of Plant Physiology, 1982, 33, 403-430.	11.1	424
178	Synthesis of 14C-labeled indole-3-acetylaspartic acid. Journal of Labelled Compounds and Radiopharmaceuticals, 1981, 18, 1393-1396.	0.5	24
179	Double-standard isotope dilution assay. Analytical Biochemistry, 1981, 112, 249-257.	1.1	41
180	Microscale preparation of pentafluorobenzyl esters. Journal of Chromatography A, 1981, 209, 413-420.	1.8	69

#	Article	IF	CITATIONS
181	Concentration and Metabolic Turnover of Indoles in Germinating Kernels of <i>Zea mays</i> L Plant Physiology, 1980, 65, 415-421.	2.3	178
182	The bound auxins: Protection of indole-3-acetic acid from peroxidase-catalyzed oxidation. Planta, 1978, 139, 203-208.	1.6	74
183	Synthesis of 14C-indole-3-acetyl-myo-inositol. Journal of Labelled Compounds and Radiopharmaceuticals, 1978, 15, 325-329.	0.5	26
184	Auxin-induced H+ Secretion in Helianthus and Its Implications. Plant Physiology, 1977, 60, 509-512.	2.3	55
185	Photo-regulation of the ratio of ester to free indole-3-acetic acid. Biochemical and Biophysical Research Communications, 1977, 79, 1219-1223.	1.0	92
186	Calcium Requirement for Indoleacetic Acid-induced Acidification by Avena Coleoptiles. Plant Physiology, 1976, 57, 347-350.	2.3	40