Peter J Gleckler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8529690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 2008, 453, 1090-1093.	27.8	676
2	An Overview of the Results of the Atmospheric Model Intercomparison Project (AMIP I). Bulletin of the American Meteorological Society, 1999, 80, 29-55.	3.3	668
3	Selecting global climate models for regional climate change studies. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8441-8446.	7.1	525
4	Penetration of Human-Induced Warming into the World's Oceans. Science, 2005, 309, 284-287.	12.6	406
5	The effect of horizontal resolution on simulation quality in the <scp>C</scp> ommunity <scp>A</scp> tmospheric <scp>M</scp> odel, <scp>CAM</scp> 5.1. Journal of Advances in Modeling Earth Systems, 2014, 6, 980-997.	3.8	233
6	OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 2016, 9, 3231-3296.	3.6	223
7	Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1329-1342.	3.3	195
8	ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP. Geoscientific Model Development, 2016, 9, 1747-1802.	3.6	127
9	Industrial-era global ocean heat uptake doubles in recent decades. Nature Climate Change, 2016, 6, 394-398.	18.8	127
10	Identifying human influences on atmospheric temperature. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 26-33.	7.1	117
11	Quantifying underestimates of long-term upper-ocean warming. Nature Climate Change, 2014, 4, 999-1005.	18.8	116
12	Evaluation of continental precipitation in 20th century climate simulations: The utility of multimodel statistics. Water Resources Research, 2006, 42, .	4.2	101
13	Anthropogenic Warming of the Oceans: Observations and Model Results. Journal of Climate, 2006, 19, 1873-1900.	3.2	95
14	Human and natural influences on the changing thermal structure of the atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17235-17240.	7.1	84
15	Uncertainties in Global Ocean Surface Heat Flux Climatologies Derived from Ship Observations. Journal of Climate, 1997, 10, 2764-2781.	3.2	79
16	MJO Propagation Across the Maritime Continent: Are CMIP6 Models Better Than CMIP5 Models?. Geophysical Research Letters, 2020, 47, e2020GL087250.	4.0	77
17	The fingerprint of humanâ€induced changes in the ocean's salinity and temperature fields. Geophysical Research Letters, 2012, 39,	4.0	74
18	Three-dimensional tropospheric water vapor in coupled climate models compared with observations from the AIRS satellite system. Geophysical Research Letters, 2006, 33, .	4.0	55

Peter J Gleckler

#	Article	IF	CITATIONS
19	Evaluation of CMIP5 dynamic sea surface height multi-model simulations against satellite observations. Climate Dynamics, 2014, 43, 1271-1283.	3.8	54
20	Long-term sea-level change revisited: the role of salinity. Environmental Research Letters, 2014, 9, 114017.	5.2	51
21	A More Powerful Reality Test for Climate Models. Eos, 2016, 97, .	0.1	50
22	Ocean Warming: From the Surface to the Deep in Observations and Models. Oceanography, 2018, 31, 41-51.	1.0	33
23	Regional assessment of the parameterâ€dependent performance of CAM4 in simulating tropical clouds. Geophysical Research Letters, 2012, 39, .	4.0	31
24	Representation of Modes of Variability in Six U.S. Climate Models. Journal of Climate, 2020, 33, 7591-7617.	3.2	21
25	Secular trends and climate drift in coupled ocean-atmosphere general circulation models. Journal of Geophysical Research, 2006, 111, .	3.3	20
26	The Role of the Mean State on MJO Simulation in CESM2 Ensemble Simulation. Geophysical Research Letters, 2020, 47, e2020GL089824.	4.0	16
27	The effect of horizontal resolution on ocean surface heat fluxes in the ECMWF model. Climate Dynamics, 1993, 9, 17-32.	3.8	14
28	Ocean Circulations, Heat Budgets, and Future Commitment to Climate Change. Annual Review of Environment and Resources, 2011, 36, 27-43.	13.4	11
29	Sampling strategies for the comparison of climate model calculated and satellite observed brightness temperatures. Journal of Geophysical Research, 2000, 105, 9393-9406.	3.3	10
30	Coupled ocean-atmosphere climate simulations compared with simulations using prescribed sea surface temperature: effect of a "perfect ocean― Global and Planetary Change, 2004, 41, 1-14.	3.5	9
31	Superior Daily and Subâ€Daily Precipitation Statistics for Intense and Longâ€Lived Storms in Global Stormâ€Resolving Models. Geophysical Research Letters, 2022, 49, .	4.0	5