Chengkai Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8529644/publications.pdf

Version: 2024-02-01

	687363	794594
389	13	19
citations	h-index	g-index
10	1.0	0.17
19	19	317
docs citations	times ranked	citing authors
	citations 19	389 13 citations h-index 19 19

#	Article	IF	CITATIONS
1	Effect of stick-slip on the scratch performance of polypropylene. Tribology International, 2015, 91, 1-5.	5.9	47
2	Modeling of competition between shear yielding and crazing in amorphous polymers' scratch. International Journal of Solids and Structures, 2017, 124, 215-228.	2.7	38
3	A test procedure for separating viscous recovery and accumulated unrecoverable deformation of polymer under cyclic loading. Polymer Testing, 2013, 32, 1445-1451.	4.8	37
4	In-situ observation of temperature rise during scratch testing of poly (methylmethacrylate) and polycarbonate. Tribology International, 2016, 95, 1-4.	5.9	28
5	Constitutive modeling of the rate- and temperature-dependent macro-yield behavior of amorphous glassy polymers. International Journal of Mechanical Sciences, 2020, 179, 105653.	6.7	28
6	Effect of thermal aging on the scratch behavior of poly (methyl methacrylate). Tribology International, 2016, 101, 110-114.	5.9	26
7	Scratch behavior of the aged hydrogenated nitrile butadiene rubber. Wear, 2016, 352-353, 155-159.	3.1	23
8	Accelerated aging test of hydrogenated nitrile butadiene rubber using the time–temperature–strain superposition principle. RSC Advances, 2015, 5, 90178-90183.	3.6	22
9	Rate dependent shear debonding between a highly stretchable elastomer and a rigid substrate: Delayed debonding and pre-stretch effect. Engineering Fracture Mechanics, 2019, 222, 106743.	4.3	18
10	Accelerated ratcheting testing of polycarbonate using the time-temperature-stress equivalence method. Polymer Testing, 2015, 44, 8-14.	4.8	17
11	Application of time-temperature-stress superposition principle on the accelerated physical aging test of polycarbonate. Polymer Engineering and Science, 2015, 55, 2215-2221.	3.1	15
12	Experimental and numerical investigations of evaluation criteria and material parameters' coupling effect on polypropylene scratch. Polymer Engineering and Science, 2018, 58, 118-122.	3.1	15
13	Finite deformation constitutive model for macro-yield behavior of amorphous glassy polymers with a molecular entanglement-based internal-state variable. International Journal of Mechanical Sciences, 2019, 161-162, 105064.	6.7	13
14	A visco-hyperelastic model of brain tissue incorporating both tension/compression asymmetry and volume compressibility. Acta Mechanica, 2019, 230, 2125-2135.	2.1	13
15	Analytical model of friction behavior during polymer scratching with conical tip. Friction, 2019, 7, 466-478.	6.4	12
16	Investigation of zero-degree peeling behavior of visco-hyperelastic highly stretchable adhesive tape on rigid substrate. Engineering Fracture Mechanics, 2021, 241, 107368.	4.3	11
17	A new form of equivalent stress for combined axial–torsional loading considering the tension–compression asymmetry of polymeric materials. RSC Advances, 2015, 5, 72780-72784.	3.6	10
18	Effect of stress relaxation on accelerated physical aging of hydrogenated nitrile butadiene rubber using time-temperature-strain superposition principle. Advanced Industrial and Engineering Polymer Research, 2019, 2, 61-68.	4.7	10

#	Article	IF	CITATIONS
19	Mechanism of temperature rise due to crazing evolution during PMMA scratch. International Journal of Solids and Structures, 2020, 199, 120-130.	2.7	6