Toni Schneider

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8529539/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The amino terminus of a calcium channel \hat{l}^2 subunitsets rates of channel inactivation independently of the subunit's effect on activation. Neuron, 1994, 13, 1433-1438.	3.8	181
2	Functional Specialization of Presynaptic Cav2.3 Ca2+ Channels. Neuron, 2003, 39, 483-496.	3.8	175
3	CaV2.3 calcium channels control second-phase insulin release. Journal of Clinical Investigation, 2005, 115, 146-154.	3.9	153
4	Comparison of the Ca2 +  currents induced by expression of three cloned α1 subunits, α1G, α1H and α1I, low-voltage-activated T-type Ca2 +  channels. European Journal of Neuroscience, 1999, 11, 4171-4178.	of 1.2	152
5	Calcium channels: Structure, function, and classification. Drug Development Research, 1994, 33, 295-318.	1.4	119
6	R-type Ca2+-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nature Cell Biology, 2007, 9, 453-460.	4.6	95
7	Amyotrophic lateral sclerosis patient antibodies label Ca2+ channel ?1 subunit. Annals of Neurology, 1994, 35, 164-171.	2.8	91
8	Electrocorticographic and deep intracerebral EEG recording in mice using a telemetry system. Brain Research Protocols, 2005, 14, 154-164.	1.7	86
9	CaV2.3 calcium channels control second-phase insulin release. Journal of Clinical Investigation, 2005, 115, 146-154.	3.9	81
10	Disturbances in Glucose-Tolerance, Insulin-Release, and Stress-Induced Hyperglycemia upon Disruption of the Ca _v 2.3 (α1E) Subunit of Voltage-Gated Ca ²⁺ Channels. Molecular Endocrinology, 2002, 16, 884-895.	3.7	79
11	The CaV2.3 Ca2+channel subunit contributes to Râ€Type Ca2+currents in murine hippocampal and neocortical neurones. Journal of Physiology, 2002, 542, 699-710.	1.3	79
12	Ablation of Cav2.3 / E?type voltage?gated calcium channel results in cardiac arrhythmia and altered autonomic control within the murine cardiovascular system. Basic Research in Cardiology, 2005, 100, 1-13.	2.5	77
13	Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell, 2021, 28, 1740-1757.e8.	5.2	77
14	Altered Seizure Susceptibility in Mice Lacking the Cav2.3 E-type Ca2+ Channel. Epilepsia, 2006, 47, 839-850.	2.6	75
15	Cav2.3 channels contribute to dopaminergic neuron loss in a model of Parkinson's disease. Nature Communications, 2019, 10, 5094.	5.8	65
16	Hippocampal Seizure Resistance and Reduced Neuronal Excitotoxicity in Mice Lacking the Cav2.3 E/R-Type Voltage-Gated Calcium Channel. Journal of Neurophysiology, 2007, 97, 3660-3669.	0.9	64
17	Synapse and Active Zone Assembly in the Absence of Presynaptic Ca2+ Channels and Ca2+ Entry. Neuron, 2020, 107, 667-683.e9.	3.8	64
18	Immunodetection of α1E Voltage-gated Ca2+Channel in Chromogranin-positive Muscle Cells of Rat Heart, and in Distal Tubules of Human Kidney. Journal of Histochemistry and Cytochemistry, 2000, 48, 807-819.	1.3	62

#	Article	IF	CITATIONS
19	New isoform of the neuronal Ca2+ channel alpha1E subunit in islets of Langerhans and kidney . Distribution of voltage-gated Ca2+ channel alpha1 subunits in cell lines and tissues. FEBS Journal, 1998, 257, 274-285.	0.2	59
20	The Cav2.3 voltage-gated calcium channel in epileptogenesis—Shedding new light on an enigmatic channel. Neuroscience and Biobehavioral Reviews, 2006, 30, 1122-1144.	2.9	59
21	Alternate Splicing in the Cytosolic II–III Loop and the Carboxy Terminus of Human E-type Voltage-Gated Ca Channels: Electrophysiological Characterization of Isoforms. Molecular and Cellular Neurosciences, 2002, 21, 352-365.	1.0	54
22	Molecular analysis and functional expression of the human type E neuronal Ca2+ channel alpha 1 subunit. Receptors and Channels, 1994, 2, 255-70.	1.1	54
23	Actions of sipatrigine, 202W92 and lamotrigine on R-type and T-type Ca2+ channel currents. European Journal of Pharmacology, 2003, 467, 77-80.	1.7	53
24	The isolated perfused bovine retina—A sensitive tool for pharmacological research on retinal function. Brain Research Protocols, 2005, 16, 27-36.	1.7	48
25	G protein interaction with K+ and Ca2+ channels. Trends in Pharmacological Sciences, 1997, 18, 8-11.	4.0	46
26	Receptor-mediated modulation of recombinant neuronal class E calcium channels. FEBS Letters, 1997, 408, 261-270.	1.3	45
27	Properties of Ba2+ currents arising from human α1E and α1Eβ3 constructs expressed in HEK293 cells: physiology, pharmacology, and comparison to native T-type Ba2+ currents. Neuropharmacology, 1998, 37, 957-972.	2.0	41
28	Immunohistochemical Detection of α1E Voltage-gated Ca2+Channel Isoforms in Cerebellum, INS-1 Cells, and Neuroendocrine Cells of the Digestive System. Journal of Histochemistry and Cytochemistry, 1999, 47, 981-994.	1.3	41
29	Ca2+-sensitive regulation of E-type Ca2+ channel activity depends on an arginine-rich region in the cytosolic II-III loop. European Journal of Neuroscience, 2003, 18, 841-855.	1.2	37
30	lsoforms of α1E voltage-gated calcium channels in rat cerebellar granule cells. Neuroscience, 1999, 92, 565-575.	1.1	36
31	Isoflurane-Sensitive Presynaptic R-Type Calcium Channels Contribute to Inhibitory Synaptic Transmission in the Rat Thalamus. Journal of Neuroscience, 2009, 29, 1434-1445.	1.7	31
32	The cytosolic II-III loop of Cav2.3 provides an essential determinant for the phorbol ester-mediated stimulation of E-type Ca2+ channel activity. European Journal of Neuroscience, 2004, 19, 2659-2668.	1.2	30
33	Voltage-gated calcium channels: Determinants of channel function and modulation by inorganic cations. Progress in Neurobiology, 2015, 129, 1-36.	2.8	27
34	Cav2.3 (R-Type) Calcium Channels are Critical for Mediating Anticonvulsive and Neuroprotective Properties of Lamotrigine In Vivo. Cellular Physiology and Biochemistry, 2017, 44, 935-947.	1.1	26
35	The ablation of the Cav2.3/E-type voltage-gated Ca2+ channel causes a mild phenotype despite an altered glucose induced glucagon response in isolated islets of Langerhans. European Journal of Pharmacology, 2005, 511, 65-72.	1.7	23
36	Reduction of insulin secretion in the insulinoma cell line INS-1 by overexpression of a Ca(v)2.3 (alpha1E) calcium channel antisense cassette. European Journal of Endocrinology, 2002, 146, 881-889.	1.9	21

#	Article	IF	CITATIONS
37	A Ni2+-sensitive component of the ERG b-wave from the isolated bovine retina is related to E-type voltage-gated Ca2+ channels. Graefe's Archive for Clinical and Experimental Ophthalmology, 2005, 243, 933-941.	1.0	20
38	Evaluation of a Murine Single-Blood-Injection SAH Model. PLoS ONE, 2014, 9, e114946.	1.1	18
39	Surgical Approaches in Psychiatry: A Survey of the World Literature on Psychosurgery. World Neurosurgery, 2017, 97, 603-634.e8.	0.7	18
40	Antagonists of ionotropic γâ€aminobutyric acid receptors impair the NiCl ₂ â€mediated stimulation of the electroretinogram bâ€wave amplitude from the isolated superfused vertebrate retina. Acta Ophthalmologica, 2009, 87, 854-865.	0.6	17
41	Pharmacoresistant Ca _v 2·3 (Eâ€type/Râ€type) voltageâ€gated calcium channels influence heart rate dynamics and may contribute to cardiac impulse conduction. Cell Biochemistry and Function, 2013, 31, 434-449.	1.4	17
42	Consequences of hyperphosphorylated tau on the morphology and excitability of hippocampal neurons in aged tau transgenic mice. Neurobiology of Aging, 2020, 93, 109-123.	1.5	17
43	Cardiac phenomena during kainic-acid induced epilepsy and lamotrigine antiepileptic therapy. Epilepsy Research, 2014, 108, 666-674.	0.8	15
44	Effect of ZnCl2and Chelation of Zinc Ions by N,N-Diethyldithiocarbamate (DEDTC) on the ERG b-Wave Amplitude from the Isolated Superfused Vertebrate Retina. Current Eye Research, 2010, 35, 322-334.	0.7	14
45	How "Pharmacoresistant―is Cav2.3, the Major Component of Voltage-Gated R-type Ca2+ Channels?. Pharmaceuticals, 2013, 6, 759-776.	1.7	14
46	Systemic and Cerebral Concentration of Nimodipine During Established and Experimental Vasospasm Treatment. World Neurosurgery, 2017, 102, 459-465.	0.7	14
47	Non-invasive evaluation of neurovascular coupling in the murine retina by dynamic retinal vessel analysis. PLoS ONE, 2018, 13, e0204689.	1.1	13
48	NCS-1 Deficiency Affects mRNA Levels of Genes Involved in Regulation of ATP Synthesis and Mitochondrial Stress in Highly Vulnerable Substantia nigra Dopaminergic Neurons. Frontiers in Molecular Neuroscience, 2019, 12, 252.	1.4	13
49	Cav2.3 R-type calcium channels: from its discovery to pathogenic de novo CACNA1E variants: a historical perspective. Pflugers Archiv European Journal of Physiology, 2020, 472, 811-816.	1.3	13
50	β2-subunit alternative splicing stabilizes Cav2.3 Ca2+ channel activity during continuous midbrain dopamine neuron-like activity. ELife, 0, 11, .	2.8	12
51	Longer lasting electroretinographic recordings from the isolated and superfused murine retina. Graefe's Archive for Clinical and Experimental Ophthalmology, 2009, 247, 1339-1352.	1.0	11
52	Two separate Ni ²⁺ â€sensitive voltageâ€gated Ca ²⁺ channels modulate transretinal signalling in the isolated murine retina. Acta Ophthalmologica, 2011, 89, e579-90.	0.6	11
53	Cav2.3ÂE-/R-type voltage-gated calcium channels modulate sleep in mice. Somnologie, 2013, 17, 185-192.	0.9	11
54	Electroretinographic Assessment of Inner Retinal Signaling in the Isolated and Superfused Murine Retina. Current Eye Research, 2017, 42, 1518-1526.	0.7	10

#	Article	lF	CITATIONS
55	A practical guide to the preparation and use of metal ionâ€buffered systems for physiological research. Acta Physiologica, 2018, 222, e12988.	1.8	10
56	In response: Cav2.3 (Râ€ŧype) calcium channels are critical for mediating anticonvulsive and neuroprotective properties of lamotrigine in vivo. Epilepsia, 2015, 56, 1181-1181.	2.6	9
57	Reciprocal modulation of Ca _v 2.3 voltageâ€gated calcium channels by copper(<scp>II</scp>) ions and kainic acid. Journal of Neurochemistry, 2018, 147, 310-322.	2.1	9
58	Modulation of Cav2.3 channels by unconjugated bilirubin (UCB) – Candidate mechanism for UCB-induced neuromodulation and neurotoxicity. Molecular and Cellular Neurosciences, 2019, 96, 35-46.	1.0	9
59	Diethyldithiocarbamate-mediated zinc ion chelation reveals role of Cav2.3 channels in glucagon secretion. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 953-964.	1.9	8
60	In vitro and in vivo phosphorylation of the Cav2.3 voltage-gated R-type calcium channel. Channels, 2018, 12, 326-334.	1.5	8
61	Alpha-1 subunits of voltage gated Ca2+ channels in the mesencephalon × neuroblastoma hybrid cell line MES23.5. Neuroscience, 1995, 68, 479-485.	1.1	6
62	CaV2.3 E-/R-Type Voltage-Gated Calcium Channels Modulate Sleep in Mice. Sleep, 2015, 38, 499-499.	0.6	6
63	Unconjugated bilirubin modulates neuronal signaling only in wildâ€type mice, but not after ablation of the Râ€type/Ca _v 2.3 voltageâ€gated calcium channel. CNS Neuroscience and Therapeutics, 2018, 24, 222-230.	1.9	6
64	Ca _v 2.3 channel function and Zn ²⁺ -induced modulation: potential mechanisms and (patho)physiological relevance. Channels, 2020, 14, 362-379.	1.5	6
65	Zn2+-induced changes in Cav2.3 channel function: An electrophysiological and modeling study. Journal of General Physiology, 2020, 152, .	0.9	6
66	R-Type Voltage-Gated Ca ²⁺ Channels in Cardiac and Neuronal Rhythmogenesis. Current Molecular Pharmacology, 2015, 8, 102-108.	0.7	5
67	Protein phosphorylation maintains the normal function of cloned human Cav2.3 channels. Journal of General Physiology, 2018, 150, 491-510.	0.9	5
68	L-cysteine modulates visceral nociception mediated by the CaV2.3 R-type calcium channels. Pflugers Archiv European Journal of Physiology, 2022, 474, 435-445.	1.3	5
69	A large scale preparative gel electrophoresis separation of α1 and α2 subunits of the voltage-gated Ca2+ channel from rabbit skeletal muscle. Electrophoresis, 1994, 15, 1186-1190.	1.3	4
70	Non-Mendelian inheritance during inbreeding of Cav3.2 and Cav2.3 deficient mice. Scientific Reports, 2020, 10, 15993.	1.6	4
71	In Reply to "Corpus Callosotomy for Drug-Resistant Schizophrenia; Novel Treatment Based on Pathophysiology― World Neurosurgery, 2018, 116, 485.	0.7	3
72	Retinal Vessel Responses to Flicker Stimulation Are Impaired in Cav2.3-Deficient Mice—An in-vivo Evaluation Using Retinal Vessel Analysis (RVA). Frontiers in Neurology, 2021, 12, 659890.	1.1	3

#	Article	IF	CITATIONS
73	Cav2.3 voltage-gated Ca2+ channels and their influence on sleep architecture. Somnologie, 2013, 17, 307-308.	0.9	2
74	Experimentally Induced Convulsive Seizures Are Modulated in Part by Zinc Ions through the Pharmacoresistant Cav2.3 Calcium Channel. Cellular Physiology and Biochemistry, 2020, 54, 180-194.	1.1	2
75	The effect of anakinra on retinal function in isolated perfused vertebrate retina. Journal of Current Ophthalmology, 2017, 29, 69-71.	0.3	1
76	Multiple nickel-sensitive targets elicit cardiac arrhythmia in isolated mouse hearts after pituitary adenylate cyclase-activating polypeptide-mediated chronotropy. Pharmacological Research, 2017, 117, 140-147.	3.1	1
77	Intracerebroventricular administration of histidine reduces kainic acid-induced convulsive seizures in mice. Experimental Brain Research, 2019, 237, 2481-2493.	0.7	1
78	Low concentrations of ethanol but not of dimethyl sulfoxide (DMSO) impair reciprocal retinal signal transduction. Graefe's Archive for Clinical and Experimental Ophthalmology, 2015, 253, 1713-1719.	1.0	0
79	Submicromolar copper (II) ions stimulate transretinal signaling in the isolated retina from wild type but not from Cav2.3-deficient mice. BMC Ophthalmology, 2020, 20, 182.	0.6	0
80	Effects of (-)bicuculline and gamma-aminobutyric acid on the NiCl2 mediated stimulation of the ERG b-wave amplitude from the isolated superfused vertebrate retina. Acta Ophthalmologica, 0, 85, 0-0.	0.4	0