Ari Chae

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8529008/publications.pdf

Version: 2024-02-01

430874 454955 31 974 18 30 citations h-index g-index papers 31 31 31 1677 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Microwave-assisted synthesis of luminescent and biocompatible lysine-based carbon quantum dots. Journal of Industrial and Engineering Chemistry, 2017, 47, 329-335.	5.8	131
2	Fluorescent carbon nanoparticles derived from natural materials of mango fruit for bio-imaging probes. Nanoscale, 2014, 6, 15196-15202.	5.6	87
3	Progress in internal/external stimuli responsive fluorescent carbon nanoparticles for theranostic and sensing applications. Journal of Materials Chemistry B, 2018, 6, 1149-1178.	5.8	78
4	Mechanism and Kinetics of Oxidation Reaction of Aqueous Ti ₃ C ₂ T _{<i>x</i>} Suspensions at Different pHs and Temperatures. ACS Applied Materials & Different pHs and Temperatures.	8.0	64
5	Microwave-assisted synthesis of fluorescent carbon quantum dots from an A ₂ /B ₃ monomer set. RSC Advances, 2017, 7, 12663-12669.	3.6	60
6	Preparation of water soluble graphene using polyethylene glycol: Comparison of covalent approach and noncovalent approach. Journal of Industrial and Engineering Chemistry, 2011, 17, 298-303.	5.8	55
7	Simple Microwave-Assisted Synthesis of Amphiphilic Carbon Quantum Dots from A ₃ /B ₂ Polyamidation Monomer Set. ACS Applied Materials & Interfaces, 2017, 9, 27883-27893.	8.0	50
8	Exfoliation of black phosphorus in ionic liquids. Nanotechnology, 2017, 28, 125603.	2.6	48
9	Synthesis of porous Pd nanoparticles by therapeutic chaga extract for highly efficient tri-modal cancer treatment. Nanoscale, 2018, 10, 19810-19817.	5.6	38
10	Thermoâ€Responsive Assembly of Chemically Reduced Graphene and Poly(<i>N</i> â€isopropylacrylamide). Macromolecular Chemistry and Physics, 2011, 212, 336-341.	2.2	37
11	Highly Efficient Visible Blue-Emitting Black Phosphorus Quantum Dot: Mussel-Inspired Surface Functionalization for Bioapplications. ACS Omega, 2017, 2, 7096-7105.	3.5	37
12	Fucoidan-coated coral-like Pt nanoparticles for computed tomography-guided highly enhanced synergistic anticancer effect against drug-resistant breast cancer cells. Nanoscale, 2019, 11, 15173-15183.	5.6	36
13	Mitochondria-targeted fluorescent carbon nano-platform for NIR-triggered hyperthermia and mitochondrial inhibition. Journal of Industrial and Engineering Chemistry, 2017, 55, 224-233.	5.8	35
14	Photothermal conversion upon near-infrared irradiation of fluorescent carbon nanoparticles formed from carbonized polydopamine. RSC Advances, 2016, 6, 61482-61491.	3.6	34
15	Pluronic mimicking fluorescent carbon nanoparticles conjugated with doxorubicin via acid-cleavable linkage for tumor-targeted drug delivery and bioimaging. Journal of Industrial and Engineering Chemistry, 2016, 43, 150-157.	5.8	32
16	Reduction of Electrochemically Exfoliated Graphene Films for High-Performance Electromagnetic Interference Shielding. ACS Applied Materials & Samp; Interfaces, 2021, 13, 15827-15836.	8.0	27
17	Microwave-assisted synthesis of multifunctional fluorescent carbon quantum dots from A4/B2 polyamidation monomer sets. Applied Surface Science, 2021, 542, 148471.	6.1	19
18	Production of graphene oxide from pitch-based carbon fiber. Scientific Reports, 2015, 5, 11707.	3.3	18

#	Article	IF	CITATIONS
19	Mechanochemical synthesis of fluorescent carbon dots from cellulose powders. Nanotechnology, 2018, 29, 165604.	2.6	16
20	Enhanced photothermal bactericidal activity of chemically reduced graphene oxide stabilized by tripodal amphiphile. Applied Surface Science, 2019, 474, 111-117.	6.1	13
21	Exfoliated MXene as a mediator for efficient laser desorption/ionization mass spectrometry analysis of various analytes. Talanta, 2020, 209, 120531.	5.5	13
22	Formulation of chemically reduced graphene oxide assembly with poly(4â€vinyl pyridine) through noncovalent interaction. Journal of Applied Polymer Science, 2013, 130, 2538-2543.	2.6	12
23	Visible-light-driven photocatalysis with dopamine-derivatized titanium dioxide/N-doped carbon core/shell nanoparticles. Journal of Materials Science, 2017, 52, 5582-5588.	3.7	7
24	Visualization of Noncovalent Interaction between Aliphatic Dendrimers and Chemically Reduced Graphene Oxide. Chemistry Letters, 2015, 44, 665-667.	1.3	6
25	Microwave-assisted Synthesis of Highly Fluorescent and Biocompatible Silicon Nanoparticles Using Glucose as Dual Roles of Reducing Agents and Hydrophilic Ligands. Chemistry Letters, 2017, 46, 398-400.	1.3	5
26	Chemically Reduced Graphene Oxide with Crosslinked Shell Showing Enhanced Environmental Stability Using Thiol-grafted Pluronic. Chemistry Letters, 2013, 42, 200-201.	1.3	4
27	Polyacrylonitrile-based carbon nanofibers as a matrix for laser desorption/ionization time-of-flight mass spectrometric analysis of small molecules under both positive and negative ionization modes. Analytical and Bioanalytical Chemistry, 2021, 413, 1193-1202.	3.7	4
28	Soluble Chemically Reduced Graphene Oxide Assembly with High-molecular-weight Poly(ethylene) Tj ETQq0 0 0	rgBT /Ove 1.3	rlock 10 Tf 50
29	Correction to Simple Microwave-Assisted Synthesis of Amphiphilic Carbon Quantum Dots from A3/B2 Polyamidation Monomer Set. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3153-3153.	8.0	3
30	Microwave-assisted Synthesis of Fluorescent Polymer Dots from Hyperbranched Polyethylenimine and Glycerol. Chemistry Letters, 2017, 46, 1463-1465.	1.3	2
31	Formulation of PEDOT:S-Graphene Hybrid and Its Application as Transparent Conducting Electrode Materials. Materials Today: Proceedings, 2019, 10, 448-455.	1.8	О