Khanh Huy Bui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8528915/publications.pdf Version: 2024-02-01

Κηννη Ηπλ Βιπ

#	Article	IF	CITATIONS
1	The inner junction complex of the cilia is an interaction hub that involves tubulin post-translational modifications. ELife, 2020, 9, .	2.8	1,191
2	In situ structural analysis of the human nuclear pore complex. Nature, 2015, 526, 140-143.	13.7	361
3	Integrated Structural Analysis of the Human Nuclear Pore Complex Scaffold. Cell, 2013, 155, 1233-1243.	13.5	321
4	Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science, 2016, 352, 363-365.	6.0	284
5	Fourier ring correlation as a resolution criterion for super-resolution microscopy. Journal of Structural Biology, 2013, 183, 363-367.	1.3	269
6	Polarity and asymmetry in the arrangement of dynein and related structures in the <i>Chlamydomonas</i> axoneme. Journal of Cell Biology, 2012, 198, 913-925.	2.3	182
7	Cryoelectron tomography of radial spokes in cilia and flagella. Journal of Cell Biology, 2011, 195, 673-687.	2.3	157
8	Molecular architecture of inner dynein arms in situ in <i>Chlamydomonas reinhardtii</i> flagella. Journal of Cell Biology, 2008, 183, 923-932.	2.3	155
9	Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope. ELife, 2016, 5, .	2.8	143
10	Asymmetry of inner dynein arms and inter-doublet links in <i>Chlamydomonas</i> flagella. Journal of Cell Biology, 2009, 186, 437-446.	2.3	131
11	Nucleotide-induced global conformational changes of flagellar dynein arms revealed by in situ analysis. Nature Structural and Molecular Biology, 2010, 17, 761-767.	3.6	110
12	Capturing protein communities by structural proteomics in a thermophilic eukaryote. Molecular Systems Biology, 2017, 13, 936.	3.2	108
13	Pre-assembled Nuclear Pores Insert into the Nuclear Envelope during Early Development. Cell, 2016, 166, 664-678.	13.5	101
14	Revisiting the Supramolecular Organization of Photosystem II in Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2012, 287, 31574-31581.	1.6	100
15	Subnanometre-resolution structure of the doublet microtubule reveals new classes of microtubule-associated proteins. Nature Communications, 2017, 8, 15035.	5.8	98
16	Comparative structural analysis of eukaryotic flagella and cilia from Chlamydomonas, Tetrahymena, and sea urchins. Journal of Structural Biology, 2012, 178, 199-206.	1.3	90
17	X-Ray Crystallography and Electron Microscopy of Cross- and Multi-Module Nonribosomal Peptide Synthetase Proteins Reveal a Flexible Architecture. Structure, 2017, 25, 783-793.e4.	1.6	90
18	Nanostructure, osteopontin, and mechanical properties of calcitic avian eggshell. Science Advances, 2018, 4, eaar3219.	4.7	86

Khanh Huy Bui

#	Article	IF	CITATIONS
19	Facilitated aggregation of FG nucleoporins under molecular crowding conditions. EMBO Reports, 2013, 14, 178-183.	2.0	78
20	Structural basis for assembly and function of the Nup82 complex in the nuclear pore scaffold. Journal of Cell Biology, 2015, 208, 283-297.	2.3	64
21	Tubulin lattice in cilia is in a stressed form regulated by microtubule inner proteins. Proceedings of the United States of America, 2019, 116, 19930-19938.	3.3	61
22	Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation. Nature Communications, 2021, 12, 573.	5.8	61
23	Microtubule Inner Proteins: A Meshwork of Luminal Proteins Stabilizing the Doublet Microtubule. BioEssays, 2018, 40, 1700209.	1.2	53
24	Cryo electron tomography with volta phase plate reveals novel structural foundations of the 96-nm axonemal repeat in the pathogen Trypanosoma brucei. ELife, 2019, 8, .	2.8	46
25	α- and β-Tubulin Lattice of the Axonemal Microtubule Doublet and Binding Proteins Revealed by Single Particle Cryo-Electron Microscopy and Tomography. Structure, 2015, 23, 1584-1595.	1.6	41
26	Remodeling and activation mechanisms of outer arm dyneins revealed by cryoâ€EM. EMBO Reports, 2021, 22, e52911.	2.0	39
27	Local computational methods to improve the interpretability and analysis of cryo-EM maps. Nature Communications, 2021, 12, 1240.	5.8	36
28	Mouse respiratory cilia with the asymmetric axonemal structure on sparsely distributed ciliary cells can generate overall directional flow. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1081-1087.	1.7	34
29	3D Structural Analysis of Flagella/Cilia by Cryo-Electron Tomography. Methods in Enzymology, 2013, 524, 305-323.	0.4	34
30	Structure of dimeric axonemal dynein in cilia suggests an alternative mechanism of force generation. Cytoskeleton, 2014, 71, 412-422.	1.0	30
31	Identification and mapping of central pair proteins by proteomic analysis. Biophysics and Physicobiology, 2020, 17, 71-85.	0.5	28
32	Three-dimensional structural analysis of eukaryotic flagella/cilia by electron cryo-tomography. Journal of Synchrotron Radiation, 2011, 18, 2-5.	1.0	24
33	Crystal structure of human PACRG in complex with MEIG1 reveals roles in axoneme formation and tubulin binding. Structure, 2021, 29, 572-586.e6.	1.6	19
34	Successive Kinesin-5 Microtubule Crosslinking and Sliding Promote Fast, Irreversible Formation of a Stereotyped Bipolar Spindle. Current Biology, 2019, 29, 3825-3837.e3.	1.8	15
35	Preparation of Doublet Microtubule Fraction for Single Particle Cryo-electron Microscopy. Bio-protocol, 2021, 11, e4041.	0.2	7
36	Cryo-electron microscopy structures of ArnA, a key enzyme for polymyxin resistance, revealed unexpected oligomerizations and domain movements. Journal of Structural Biology, 2019, 208, 43-50.	1.3	5

#	Article	IF	CITATIONS
37	The amyloid-β1–42-oligomer interacting peptide D-AIP possesses favorable biostability, pharmacokinetics, and brain region distribution. Journal of Biological Chemistry, 2022, 298, 101483.	1.6	1
38	Analysis of Ciliary Motion and the Axonemal Structure in the Mouse Respiratory Cilia. , 2012, , .		0
39	Local computational methods to improve the interpretability and analysis of cryo-EM maps. Microscopy and Microanalysis, 2021, 27, 76-78.	0.2	0