
Doo-Yeol Yoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8528719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cement and Concrete Composites, 2016, 73, 267-280.	10.7	526
2	Effect of fiber content on mechanical and fracture properties of ultra high performance fiber reinforced cementitious composites. Composite Structures, 2013, 106, 742-753.	5.8	323
3	Structural performance of ultra-high-performance concrete beams with different steel fibers. Engineering Structures, 2015, 102, 409-423.	5.3	288
4	Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers. Composites Part B: Engineering, 2014, 58, 122-133.	12.0	268
5	Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC. Construction and Building Materials, 2014, 64, 67-81.	7.2	246
6	Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites. Composite Structures, 2017, 174, 375-388.	5.8	241
7	A Review on Structural Behavior, Design, and Application of Ultra-High-Performance Fiber-Reinforced Concrete. International Journal of Concrete Structures and Materials, 2016, 10, 125-142.	3.2	211
8	Machine learning-based prediction for compressive and flexural strengths of steel fiber-reinforced concrete. Construction and Building Materials, 2021, 266, 121117.	7.2	178
9	Flexural response of steel-fiber-reinforced concrete beams: Effects of strength, fiber content, and strain-rate. Cement and Concrete Composites, 2015, 64, 84-92.	10.7	175
10	Impact resistance of fiber-reinforced concrete – A review. Cement and Concrete Composites, 2019, 104, 103389.	10.7	174
11	Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast. Construction and Building Materials, 2017, 149, 416-431.	7.2	170
12	Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Engineering Structures, 2016, 111, 246-262.	5.3	160
13	Response of ultra-high-performance fiber-reinforced concrete beams with continuous steel reinforcement subjected to low-velocity impact loading. Composite Structures, 2015, 126, 233-245.	5.8	143
14	An experimental study on pullout and tensile behavior of ultra-high-performance concrete reinforced with various steel fibers. Construction and Building Materials, 2019, 206, 46-61.	7.2	142
15	Comparative flexural behavior of ultra-high-performance concrete reinforced with hybrid straight steel fibers. Construction and Building Materials, 2017, 132, 219-229.	7.2	133
16	Shrinkage and cracking of restrained ultra-high-performance fiber-reinforced concrete slabs at early age. Construction and Building Materials, 2014, 73, 357-365.	7.2	130
17	Fiber pullout behavior of HPFRCC: Effects of matrix strength and fiber type. Composite Structures, 2017, 174, 263-276.	5.8	127
18	Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers. Sensors, 2017, 17, 1064.	3.8	127

#	Article	IF	CITATIONS
19	Local bond-slip response of GFRP rebar in ultra-high-performance fiber-reinforced concrete. Composite Structures, 2015, 120, 53-64.	5.8	122
20	Early age setting, shrinkage and tensile characteristics of ultra high performance fiber reinforced concrete. Construction and Building Materials, 2013, 41, 427-438.	7.2	119
21	Effect of fiber orientation on the rate-dependent flexural behavior of ultra-high-performance fiber-reinforced concrete. Composite Structures, 2016, 157, 62-70.	5.8	115
22	Influence of reinforcing bar type on autogenous shrinkage stress and bond behavior of ultra high performance fiber reinforced concrete. Cement and Concrete Composites, 2014, 48, 150-161.	10.7	114
23	Biaxial flexural behavior of ultra-high-performance fiber-reinforced concrete with different fiber lengths and placement methods. Cement and Concrete Composites, 2015, 63, 51-66.	10.7	114
24	Size effect in ultra-high-performance concrete beams. Engineering Fracture Mechanics, 2016, 157, 86-106.	4.3	112
25	Effect of shrinkage reducing admixture on tensile and flexural behaviors of UHPFRC considering fiber distribution characteristics. Cement and Concrete Research, 2013, 54, 180-190.	11.0	111
26	Effects of fiber shape and distance on the pullout behavior of steel fibers embedded in ultra-high-performance concrete. Cement and Concrete Composites, 2019, 103, 213-223.	10.7	111
27	Enhancing the flexural performance of ultra-high-performance concrete using long steel fibers. Composite Structures, 2016, 147, 220-230.	5.8	108
28	Hybrid effect of macro and micro steel fibers on the pullout and tensile behaviors of ultra-high-performance concrete. Composites Part B: Engineering, 2019, 162, 344-360.	12.0	107
29	Predicting the post-cracking behavior of normal- and high-strength steel-fiber-reinforced concrete beams. Construction and Building Materials, 2015, 93, 477-485.	7.2	104
30	Effectiveness of shrinkage-reducing admixture in reducing autogenous shrinkage stress of ultra-high-performance fiber-reinforced concrete. Cement and Concrete Composites, 2015, 64, 27-36.	10.7	103
31	Self-sensing capability of ultra-high-performance concrete containing steel fibers and carbon nanotubes under tension. Sensors and Actuators A: Physical, 2018, 276, 125-136.	4.1	100
32	Electrical and Self-Sensing Properties of Ultra-High-Performance Fiber-Reinforced Concrete with Carbon Nanotubes. Sensors, 2017, 17, 2481.	3.8	93
33	Hybrid effects of steel fiber and carbon nanotube on self-sensing capability of ultra-high-performance concrete. Construction and Building Materials, 2018, 185, 530-544.	7.2	93
34	Development of cost effective ultra-high-performance fiber-reinforced concrete using single and hybrid steel fibers. Construction and Building Materials, 2017, 150, 383-394.	7.2	84
35	High energy absorbent ultra-high-performance concrete with hybrid steel and polyethylene fibers. Construction and Building Materials, 2019, 209, 354-363.	7.2	82
36	Comparative pullout behavior of half-hooked and commercial steel fibers embedded in UHPC under static and impact loads. Cement and Concrete Composites, 2019, 97, 89-106.	10.7	82

#	Article	IF	CITATIONS
37	Experimental Investigation of the Piezoresistive Properties of Cement Composites with Hybrid Carbon Fibers and Nanotubes. Sensors, 2017, 17, 2516.	3.8	80
38	Electrical and piezoresistive sensing capacities of cement paste with multi-walled carbon nanotubes. Archives of Civil and Mechanical Engineering, 2018, 18, 371-384.	3.8	75
39	Size effect in normal- and high-strength amorphous metallic and steel fiber reinforced concrete beams. Construction and Building Materials, 2016, 121, 676-685.	7.2	73
40	Predicting the flexural behavior of ultra-high-performance fiber-reinforced concrete. Cement and Concrete Composites, 2016, 74, 71-87.	10.7	72
41	Comparative shrinkage behavior of ultra-high-performance fiber-reinforced concrete under ambient and heat curing conditions. Construction and Building Materials, 2018, 162, 406-419.	7.2	69
42	Experimental and numerical study on flexural behavior of ultra-high-performance fiber-reinforced concrete beams with low reinforcement ratios. Canadian Journal of Civil Engineering, 2017, 44, 18-28.	1.3	68
43	Enhancing mechanical properties of asphalt concrete using synthetic fibers. Construction and Building Materials, 2018, 178, 233-243.	7.2	68
44	Effects of fiber geometry and cryogenic condition on mechanical properties of ultra-high-performance fiber-reinforced concrete. Cement and Concrete Research, 2018, 107, 30-40.	11.0	65
45	Effect of steel fibers on the flexural behavior of RC beams with very low reinforcement ratios. Construction and Building Materials, 2018, 188, 237-254.	7.2	65
46	Effects of carbon nanomaterial type and amount on self-sensing capacity of cement paste. Measurement: Journal of the International Measurement Confederation, 2019, 134, 750-761.	5.0	64
47	Assessment of steel fiber corrosion in self-healed ultra-high-performance fiber-reinforced concrete and its effect on tensile performance. Cement and Concrete Research, 2020, 133, 106091.	11.0	62
48	Corrosion effect on tensile behavior of ultra-high-performance concrete reinforced with straight steel fibers. Cement and Concrete Composites, 2020, 109, 103566.	10.7	62
49	Influence of ring size on the restrained shrinkage behavior of ultra high performance fiber reinforced concrete. Materials and Structures/Materiaux Et Constructions, 2014, 47, 1161-1174.	3.1	61
50	Benefits of synthetic fibers on the residual mechanical performance of UHPFRC after exposure to ISO standard fire. Cement and Concrete Composites, 2019, 104, 103401.	10.7	59
51	Self-healing capability of ultra-high-performance fiber-reinforced concrete after exposure to cryogenic temperature. Cement and Concrete Composites, 2019, 104, 103335.	10.7	59
52	Predicting service deflection of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP bars. Composites Part B: Engineering, 2016, 99, 381-397.	12.0	57
53	Electrical and piezoresistive properties of cement composites with carbon nanomaterials. Journal of Composite Materials, 2018, 52, 3325-3340.	2.4	57
54	Nonlinear finite element analysis of ultra-high-performance fiber-reinforced concrete beams. International Journal of Damage Mechanics, 2017, 26, 735-757.	4.2	55

#	Article	IF	CITATIONS
55	Achieving slip-hardening behavior of sanded straight steel fibers in ultra-high-performance concrete. Cement and Concrete Composites, 2020, 113, 103669.	10.7	55
56	Flexural and cracking behaviors of reinforced UHPC beams with various reinforcement ratios and fiber contents. Engineering Structures, 2021, 248, 113266.	5.3	55
57	Drying shrinkage cracking characteristics of ultra-high-performance fibre reinforced concrete with expansive and shrinkage reducing agents. Magazine of Concrete Research, 2013, 65, 248-256.	2.0	54
58	Feasibility of replacing minimum shear reinforcement with steel fibers for sustainable high-strength concrete beams. Engineering Structures, 2017, 147, 207-222.	5.3	51
59	Effects of stirrup, steel fiber, and beam size on shear behavior of high-strength concrete beams. Cement and Concrete Composites, 2018, 87, 137-148.	10.7	50
60	Structural response of steel-fiber-reinforced concrete beams under various loading rates. Engineering Structures, 2018, 156, 271-283.	5.3	49
61	Effects of rust layer and corrosion degree on the pullout behavior of steel fibers from ultra-high-performance concrete. Journal of Materials Research and Technology, 2020, 9, 3632-3648.	5.8	49
62	Bond performance of steel rebar embedded in 80–180â€⁻MPa ultra-high-strength concrete. Cement and Concrete Composites, 2018, 93, 206-217.	10.7	48
63	Impact Resistance of Reinforced Ultra-High-Performance Concrete Beams with Different Steel Fibers. ACI Structural Journal, 2017, 114, .	0.2	48
64	Deposition of nanosilica particles on fiber surface for improving interfacial bond and tensile performances of ultra-high-performance fiber-reinforced concrete. Composites Part B: Engineering, 2021, 221, 109030.	12.0	47
65	Effect of fiber geometric property on rate dependent flexural behavior of ultra-high-performance cementitious composite. Cement and Concrete Composites, 2018, 86, 57-71.	10.7	45
66	Dynamic pullout behavior of half-hooked and twisted steel fibers in ultra-high-performance concrete containing expansive agents. Composites Part B: Engineering, 2019, 167, 517-532.	12.0	45
67	Self-healing capability of asphalt concrete with carbon-based materials. Journal of Materials Research and Technology, 2019, 8, 827-839.	5.8	42
68	Chelate effect on fiber surface morphology and its benefits on pullout and tensile behaviors of ultra-high-performance concrete. Cement and Concrete Composites, 2021, 115, 103864.	10.7	41
69	Effect of shrinkage-reducing admixture on biaxial flexural behavior of ultra-high-performance fiber-reinforced concrete. Construction and Building Materials, 2015, 89, 67-75.	7.2	39
70	Enhancing cracking resistance of ultra-high-performance concrete slabs using steel fibres. Magazine of Concrete Research, 2015, 67, 487-495.	2.0	39
71	Wireless cement-based sensor for self-monitoring of railway concrete infrastructures. Automation in Construction, 2020, 119, 103323.	9.8	39
72	Mechanical properties of ultra-high-performance fiber-reinforced concrete at cryogenic temperatures. Construction and Building Materials, 2017, 157, 498-508.	7.2	38

#	Article	IF	CITATIONS
73	Benefits of using expansive and shrinkage-reducing agents in UHPC for volume stability. Magazine of Concrete Research, 2014, 66, 745-750.	2.0	37
74	Effect of calcium sulfoaluminate-based expansive agent on rate dependent pullout behavior of straight steel fiber embedded in UHPC. Cement and Concrete Research, 2019, 122, 196-211.	11.0	36
75	Enhanced tensile ductility and sustainability of high-strength strain-hardening cementitious composites using waste cement kiln dust and oxidized polyethylene fibers. Cement and Concrete Composites, 2021, 120, 104030.	10.7	35
76	Combined effect of expansive and shrinkage-reducing admixtures on the properties of ultra high performance fiber-reinforced concrete. Journal of Composite Materials, 2014, 48, 1981-1991.	2.4	34
77	Self-sensing capacity of ultra-high-performance fiber-reinforced concrete containing conductive powders in tension. Cement and Concrete Composites, 2022, 125, 104331.	10.7	34
78	Influence of steel fibers and fiber-reinforced polymers on the impact resistance of one-way concrete slabs. Journal of Composite Materials, 2014, 48, 695-706.	2.4	33
79	Influence of embedment length on the pullout behavior of steel fibers from ultra-high-performance concrete. Materials Letters, 2020, 276, 128233.	2.6	33
80	Mechanical Properties of Steam Cured High-Strength Steel Fiber-Reinforced Concrete with High-Volume Blast Furnace Slag. International Journal of Concrete Structures and Materials, 2017, 11, 391-401.	3.2	32
81	Feasibility of Reducing the Fiber Content in Ultra-High-Performance Fiber-Reinforced Concrete under Flexure. Materials, 2017, 10, 118.	2.9	32
82	Influence of steel fibers corroded through multiple microcracks on the tensile behavior of ultra-high-performance concrete. Construction and Building Materials, 2020, 259, 120428.	7.2	32
83	Bond performance of abraded arch-type steel fibers in ultra-high-performance concrete. Cement and Concrete Composites, 2020, 109, 103538.	10.7	32
84	Effect of cryogenic temperature on the flexural and cracking behaviors of ultra-high-performance fiber-reinforced concrete. Cryogenics, 2018, 93, 75-85.	1.7	31
85	Effects of amorphous metallic fibers on the properties of asphalt concrete. Construction and Building Materials, 2016, 128, 176-184.	7.2	30
86	Comparative low-velocity impact response of textile-reinforced concrete and steel-fiber-reinforced concrete beams. Journal of Composite Materials, 2016, 50, 2421-2431.	2.4	30
87	Bond-slip response of novel half-hooked steel fibers in ultra-high-performance concrete. Construction and Building Materials, 2019, 224, 743-761.	7.2	30
88	Benefits of using amorphous metallic fibers in concrete pavement for long-term performance. Archives of Civil and Mechanical Engineering, 2017, 17, 750-760.	3.8	29
89	Size-dependent impact resistance of ultra-high-performance fiber-reinforced concrete beams. Construction and Building Materials, 2017, 142, 363-375.	7.2	29
90	Effects of geometry and hybrid ratio of steel and polyethylene fibers on the mechanical performance of ultra-high-performance fiber-reinforced cementitious composites. Journal of Materials Research and Technology, 2019, 8, 1835-1848.	5.8	29

#	Article	IF	CITATIONS
91	Thermal storage properties of lightweight concrete incorporating phase change materials with different fusion points in hybrid form for high temperature applications. Heliyon, 2020, 6, e04863.	3.2	29
92	Improvement of fiber corrosion resistance of ultra-high-performance concrete by means of crack width control and repair. Cement and Concrete Composites, 2021, 121, 104073.	10.7	29
93	Bond behavior of GFRP and steel bars in ultra-high-performance fiber-reinforced concrete. Advanced Composite Materials, 2017, 26, 493-510.	1.9	28
94	Three-dimensional hologram printing by single beam femtosecond laser direct writing. Applied Surface Science, 2018, 427, 396-400.	6.1	28
95	Optimized mix design for 180 MPa ultra-high-strength concrete. Journal of Materials Research and Technology, 2019, 8, 4182-4197.	5.8	28
96	High-performance strain-hardening cementitious composites with tensile strain capacity exceeding 4%: A review. Cement and Concrete Composites, 2022, 125, 104325.	10.7	28
97	Performance of shotcrete containing amorphous fibers for tunnel applications. Tunnelling and Underground Space Technology, 2017, 64, 85-94.	6.2	26
98	Electromagnetic interference shielding of multi-cracked high-performance fiber-reinforced cement composites – Effects of matrix strength and carbon fiber. Construction and Building Materials, 2020, 261, 119949.	7.2	26
99	Enhancing the tensile performance of ultra-high-performance concrete through novel curvilinear steel fibers. Journal of Materials Research and Technology, 2020, 9, 7570-7582.	5.8	26
100	Benefits of curvilinear straight steel fibers on the rate-dependent pullout resistance of ultra-high-performance concrete. Cement and Concrete Composites, 2021, 118, 103965.	10.7	25
101	Effects of Hooked-End Steel Fiber Geometry and Volume Fraction on the Flexural Behavior of Concrete Pedestrian Decks. Applied Sciences (Switzerland), 2019, 9, 1241.	2.5	24
102	Bayesian Regularized Artificial Neural Network Model to Predict Strength Characteristics of Fly-Ash and Bottom-Ash Based Geopolymer Concrete. Materials, 2021, 14, 1729.	2.9	24
103	Development of strain-hardening geopolymer mortar based on liquid-crystal display (LCD) glass and blast furnace slag. Construction and Building Materials, 2022, 331, 127334.	7.2	24
104	Enhancing the tensile performance of ultra-high-performance concrete through strategic use of novel half-hooked steel fibers. Journal of Materials Research and Technology, 2020, 9, 2914-2925.	5.8	23
105	Ultrasonic Monitoring of Setting and Strength Development of Ultra-High-Performance Concrete. Materials, 2016, 9, 294.	2.9	21
106	Surface modification of steel fibers using chemical solutions and their pullout behaviors from ultra-high-performance concrete. Journal of Building Engineering, 2020, 32, 101709.	3.4	20
107	Moisture dependence of electrical resistivity in under-percolated cement-based composites with multi-walled carbon nanotubes. Journal of Materials Research and Technology, 2022, 16, 47-58.	5.8	20
108	Effects of mix proportion and curing condition on shrinkage behavior of HPFRCCs with silica fume and blast furnace slag. Construction and Building Materials, 2018, 166, 241-256.	7.2	19

#	Article	IF	CITATIONS
109	Effect of fiber spacing on dynamic pullout behavior of multiple straight steel fibers in ultra-high-performance concrete. Construction and Building Materials, 2019, 210, 461-472.	7.2	19
110	Effects of waste liquid–crystal display glass powder and fiber geometry on the mechanical properties of ultra-high-performance concrete. Construction and Building Materials, 2021, 266, 120938.	7.2	19
111	Hybrid Effect of Twisted Steel and Polyethylene Fibers on the Tensile Performance of Ultra-High-Performance Cementitious Composites. Polymers, 2018, 10, 879.	4.5	18
112	Cryogenic pullout behavior of steel fibers from ultra-high-performance concrete under impact loading. Construction and Building Materials, 2020, 239, 117852.	7.2	18
113	Effect of graphene oxide on single fiber pullout behavior. Construction and Building Materials, 2021, 280, 122539.	7.2	18
114	Mitigating shrinkage cracking in posttensioning grout using shrinkage-reducing admixture. Cement and Concrete Composites, 2017, 81, 97-108.	10.7	16
115	Influence of chemically treated carbon fibers on the electromagnetic shielding of ultra-high-performance fiber-reinforced concrete. Archives of Civil and Mechanical Engineering, 2020, 20, 1.	3.8	16
116	Shear Capacity Contribution of Steel Fiber Reinforced High-Strength Concrete Compared with and without Stirrup. International Journal of Concrete Structures and Materials, 2020, 14, .	3.2	16
117	Analysis on enhanced pullout resistance of steel fibers in ultra-high performance concrete under cryogenic condition. Construction and Building Materials, 2020, 251, 118953.	7.2	16
118	Benefits of chemically treated steel fibers on enhancing the interfacial bond strength from ultra-high-performance concrete. Construction and Building Materials, 2021, 294, 123519.	7.2	16
119	Geometrical and boundary condition effects on restrained shrinkage behavior of UHPFRC slabs. KSCE Journal of Civil Engineering, 2018, 22, 185-195.	1.9	15
120	Enhancing the rate dependent fiber/matrix interfacial resistance of ultra-high-performance cement composites through surface abrasion. Journal of Materials Research and Technology, 2020, 9, 9813-9823.	5.8	15
121	Ultra-High-Performance Fiber-Reinforced Concrete: Shrinkage Strain Development at Early Ages and Potential for Cracking. Journal of Testing and Evaluation, 2017, 45, 2061-2070.	0.7	15
122	Mechanical behaviour of concrete with amorphous metallic and steel fibres. Magazine of Concrete Research, 2016, 68, 1253-1264.	2.0	14
123	Bond Behavior of Pretensioned Strand Embedded in Ultra-High-Performance Fiber-Reinforced Concrete. International Journal of Concrete Structures and Materials, 2018, 12, .	3.2	14
124	Corrosion of partially and fully debonded steel fibers from ultra-high-performance concrete and its influence on pullout resistance. Cement and Concrete Composites, 2021, 124, 104269.	10.7	14
125	Influence of Graphene Oxide Nanoparticles on Bond-Slip Reponses between Fiber and Geopolymer Mortar. Nanomaterials, 2022, 12, 943.	4.1	14
126	Implication of calcium sulfoaluminate-based expansive agent on tensile behavior of ultra-high-performance fiber-reinforced concrete. Construction and Building Materials, 2019, 217, 679-693.	7.2	13

#	Article	IF	CITATIONS
127	Highly ductile ultra-rapid-hardening mortar containing oxidized polyethylene fibers. Construction and Building Materials, 2021, 277, 122317.	7.2	13
128	Development of impact resistant high-strength strain-hardening cementitious composites (HS-SHCC) superior to reactive powder concrete (RPC) under flexure. Journal of Building Engineering, 2021, 44, 102652.	3.4	13
129	Utilization of liquid crystal display (LCD) glass waste in concrete: A review. Cement and Concrete Composites, 2022, 130, 104542.	10.7	13
130	Formation of a plano-convex micro-lens array in fused silica glass by using a CO2 laser-assisted reshaping technique. Journal of the Korean Physical Society, 2016, 69, 335-343.	0.7	12
131	Benefits of TiO2 photocatalyst on mechanical properties and nitrogen oxide removal of ultra-high-performance concrete. Construction and Building Materials, 2021, 285, 122921.	7.2	12
132	Numerical simulation on structural behavior of UHPFRC beams with steel and GFRP bars. Computers and Concrete, 2015, 16, 759-774.	0.7	12
133	Experimental investigation on torsional behaviors of ultra-high-performance fiber-reinforced concrete hollow beams. Cement and Concrete Composites, 2022, 129, 104504.	10.7	12
134	Enhancing the resistance of prestressed concrete sleepers to multiple impacts using steel fibers. Construction and Building Materials, 2018, 166, 356-372.	7.2	11
135	Cementitious material reinforced by carbon nanotube-Nylon 66 hybrid nanofibers: Mechanical strength and microstructure analysis. Materials Today Communications, 2020, 23, 100845.	1.9	11
136	Spacing and bundling effects on rate-dependent pullout behavior of various steel fibers embedded in ultra-high-performance concrete. Archives of Civil and Mechanical Engineering, 2020, 20, 1.	3.8	11
137	High-Performance Photocatalytic Cementitious Materials Containing Synthetic Fibers and Shrinkage-Reducing Admixture. Materials, 2020, 13, 1828.	2.9	11
138	Liquid crystal display glass powder as a filler for enhancing steel fiber pullout resistance in ultra-high-performance concrete. Journal of Building Engineering, 2021, 33, 101846.	3.4	11
139	Effects of Supplementary Cementitious Materials and Curing Condition on Mechanical Properties of Ultra-High-Performance, Strain-Hardening Cementitious Composites. Applied Sciences (Switzerland), 2021, 11, 2394.	2.5	11
140	Developing strain-hardening ultra-rapid-hardening mortar containing high-volume supplementary cementitious materials and polyethylene fibers. Journal of Materials Research and Technology, 2021, 13, 1934-1945.	5.8	11
141	Combined chelating and corrosion effects of steel fiber on the interfacial bond and tensile behaviors of ultra-high-performance concrete. Cement and Concrete Composites, 2022, 129, 104505.	10.7	11
142	Autogenous shrinkage of concrete with design strength 60–120 N/mm2. Magazine of Concrete Research, 2011, 63, 751-761.	2.0	10
143	Experimental and numerical analysis of the flexural response of amorphous metallic fiber reinforced concrete. Materials and Structures/Materiaux Et Constructions, 2017, 50, 1.	3.1	10
144	Residual performance of HPFRCC exposed to fire – Effects of matrix strength, synthetic fiber, and fire duration. Construction and Building Materials, 2020, 241, 118038.	7.2	10

#	Article	IF	CITATIONS
145	Mitigating early-age cracking in thin UHPFRC precast concrete products using shrinkage-reducing admixtures. PCI Journal, 2016, 61, 39-50.	0.6	10
146	Effects of blast furnace slag and steel fiber on the impact resistance of railway prestressed concrete sleepers. Cement and Concrete Composites, 2019, 99, 151-164.	10.7	9
147	Flexural and shear behaviour of high-strength SFRC beams without stirrups. Magazine of Concrete Research, 2019, 71, 503-518.	2.0	9
148	Enhancing fiber–matrix interfacial bond in ultra-high-performance concrete containing titanium dioxide. Materials Letters, 2020, 280, 128547.	2.6	9
149	Performance of glass-blended cement produced by intergrinding and separate grinding methods. Cement and Concrete Composites, 2021, 118, 103937.	10.7	9
150	Comparative Biaxial Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete Panels Using Two Different Test and Placement Methods. Journal of Testing and Evaluation, 2017, 45, 624-641.	0.7	9
151	Characteristics of Early-Age Restrained Shrinkage and Tensile Creep of Ultra-High Performance Cementitious Composites (UHPCC). Journal of the Korea Concrete Institute, 2011, 23, 581-590.	0.2	9
152	Shear Capacity of Ultrahigh-Performance Concrete with Monolithic Interface and Wet-Joint Interface. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	9
153	Effect of crack width on electromagnetic interference shielding effectiveness of high-performance cementitious composites containing steel and carbon fibers. Journal of Materials Research and Technology, 2022, 20, 359-372.	5.8	9
154	Ultraprecision Machining-based Micro-Hybrid lens design for micro scanning devices. International Journal of Precision Engineering and Manufacturing, 2015, 16, 639-646.	2.2	8
155	Steel fiber reinforced concrete panels subjected to impact projectiles with different caliber sizes and muzzle energies. Case Studies in Construction Materials, 2020, 13, e00360.	1.7	8
156	Tensile behavior of crack-repaired ultra-high-performance fiber-reinforced concrete under corrosive environment. Journal of Materials Research and Technology, 2021, 15, 6813-6827.	5.8	8
157	Transfer length in full-scale pretensioned concrete beams with 1.4â€ ⁻ m and 2.4â€ ⁻ m section depths. Engineering Structures, 2018, 171, 433-444.	5.3	7
158	Improvement of Mechanical and Durability Behaviors of Textile Concrete: Effect of Polymineral Composite Binders and Superabsorbent Polymers. Journal of Materials in Civil Engineering, 2020, 32, 04020315.	2.9	7
159	Tensile properties of cracked reactive powder concrete in corrosive environment - effects of crack width and exposure duration. Construction and Building Materials, 2021, 272, 121635.	7.2	7
160	Dynamic compressive and flexural behaviors of ultra-rapid-hardening mortar containing polyethylene fibers. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	3.8	7
161	Influence of curing conditions on the mechanical performance of ultra-high-performance strain-hardening cementitious composites. Archives of Civil and Mechanical Engineering, 2021, 21, 1.	3.8	7
162	Effects of nano-SiO2 coating and induced corrosion of steel fiber on the interfacial bond and tensile properties of ultra-high-performance concrete (UHPC). Journal of Building Engineering, 2022, 54, 104637.	3.4	7

#	Article	IF	CITATIONS
163	Strengthening effects of sprayed fiber reinforced polymers on concrete. Polymer Composites, 2015, 36, 722-730.	4.6	6
164	Development of 300†MPa ultra-high-strength mortar through a special curing regime. Construction and Building Materials, 2018, 171, 312-320.	7.2	6
165	Mechanical Properties of Corrosion-Free and Sustainable Amorphous Metallic Fiber Reinforced Concrete. ACI Materials Journal, 2016, 113, .	0.2	6
166	Evaluation of Shrinkage Cracking Characteristics and Degree of Restraint for Ultra-High-Strength Concrete. Journal of the Korea Concrete Institute, 2010, 22, 641-650.	0.2	6
167	Cracking Behavior of Posttensioning Grout with Various Strand-to-Duct Area Ratios. Journal of Materials in Civil Engineering, 2015, 27, .	2.9	5
168	Dynamic Pullout Behavior of Multiple Steel Fibers in UHPC: Effects of Fiber Geometry, Inclination Angle, and Loading Rate. Materials, 2019, 12, 3365.	2.9	5
169	Effect of cover depth and rebar diameter on shrinkage behavior of ultra-high-performance fiber-reinforced concrete slabs. Structural Engineering and Mechanics, 2017, 61, 711-719.	1.0	5
170	Durability of Concrete Containing Liquid Crystal Display Glass Powder for Pavement. ACI Materials Journal, 2019, 116, .	0.2	5
171	Reinforcing effect of surface-modified steel fibers in ultra-high-performance concrete under tension. Case Studies in Construction Materials, 2022, 16, e01125.	1.7	5
172	Mechanical and Dynamic Behavior of an Elastic Rubber Layer with Recycled Styrene-Butadiene Rubber Granules. Polymers, 2020, 12, 3022.	4.5	4
173	Photocatalytic high-performance fiber-reinforced cement composites with white Portland cement, titanium dioxide, and surface treated polyethylene fibers. Journal of Materials Research and Technology, 2021, 15, 785-800.	5.8	4
174	Surface refinement of steel fiber using nanosilica and silver and its effect on static and dynamic pullout resistance of reactive powder concrete. Journal of Building Engineering, 2022, 51, 104269.	3.4	4
175	Mechanical properties of high-strength strain-hardening cementitious composites (HS-SHCC) with hybrid supplementary cementitious materials under various curing conditions. Journal of Building Engineering, 2022, 57, 104912.	3.4	4
176	Fiber-Reinforced Cement Composites: Mechanical Properties and Structural Implications. Advances in Materials Science and Engineering, 2018, 2018, 1-2.	1.8	3
177	Polymer-Based Construction Materials for Civil Engineering. International Journal of Polymer Science, 2019, 2019, 1-2.	2.7	3
178	Autogenous shrinkage of ultra high performance concrete considering early age coefficient of thermal expansion. Structural Engineering and Mechanics, 2014, 49, 763-773.	1.0	3
179	Benefits Of Using Fiber on Impact Resistance of FRC Slabs. MATEC Web of Conferences, 2017, 138, 03009.	0.2	2
180	Fiber Orientation Effect on Flexural Response of UHPFRC. MATEC Web of Conferences, 2017, 138, 03007.	0.2	2

#	Article	IF	CITATIONS
181	Fiber-Reinforced Cement Composites: Mechanical Properties and Structural Implications 2019. Advances in Materials Science and Engineering, 2019, 2019, 1-2.	1.8	2
182	Effects of fiber type and specimen thickness on flexural behavior of ultra-high-performance fiber-reinforced concrete subjected to uniaxial and biaxial stresses. Case Studies in Construction Materials, 2021, 15, e00726.	1.7	2
183	Enhancement of Energy Absorption Capacity of Polyethylene Fiber-Reinforced Cementitious Composites According to Admixtures and Curing Conditions. Korean Society of Hazard Mitigation, 2020, 20, 319-325.	0.2	2
184	Influence of liquid crystal display glass powder on the tensile performance of ultra-high-performance fiber-reinforced concrete. Journal of Building Engineering, 2022, 57, 104901.	3.4	2
185	Advanced Cementitious Materials: Mechanical Behavior, Durability, and Volume Stability. Advances in Materials Science and Engineering, 2017, 2017, 1-2.	1.8	1
186	Full-scale pumping tests of low-viscosity ultra-high-strength concrete. Journal of Building Engineering, 2021, 43, 102616.	3.4	1
187	Evaluation of Mechanical Property and Self-healing Capacity of Ultra-high-performance Fiber-reinforced Concrete Under the Cryogenic Condition. Korean Society of Hazard Mitigation, 2018, 18, 231-238.	0.2	1
188	Tensile Performance Analysis of Ultra-Rapid-Hardening Fiber-Reinforced Concrete Based on Cement Kiln Dust Content. Korean Society of Hazard Mitigation, 2020, 20, 217-223.	0.2	1
189	Combined effect of SCMs and curing temperature on mechanical properties of high-strength strain-hardening cementitious composites. Journal of Reinforced Plastics and Composites, 0, , 073168442110517.	3.1	1
190	Mechanical performance of ultra-high-performance strain-hardening cementitious composites according to binder composition and curing conditions. Archives of Civil and Mechanical Engineering, 2022, 22, 1.	3.8	1
191	Deformation Characteristics of Ultrahigh-Strength Concrete under Unrestrained and Restrained States. Advances in Materials Science and Engineering, 2017, 2017, 1-8.	1.8	0
192	Evaluating Material Properties of Grout for PSC Bridge According to Admixture Type. Korean Society of Hazard Mitigation, 2018, 18, 299-305.	0.2	0
193	Electrical and mechanical properties of high-strength strain-hardening cementitious composites containing silvered polyethylene fibers. Journal of Building Engineering, 2022, 46, 103719.	3.4	Ο