Luke W Koblan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8528666/publications.pdf

Version: 2024-02-01

		623699	940516	
16	7,341	14	16	
papers	citations	h-index	g-index	
1.0	10	1.0	F (77	
18	18	18	5677	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 2019, 576, 149-157.	27.8	2,662
2	Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology, 2020, 38, 824-844.	17.5	1,277
3	Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nature Biotechnology, 2018, 36, 843-846.	17.5	644
4	Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Science Advances, 2017, 3, eaao4774.	10.3	582
5	Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nature Biotechnology, 2020, 38, 883-891.	17.5	502
6	Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nature Biomedical Engineering, 2020, 4, 97-110.	22.5	293
7	In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice. Nature, 2021, 589, 608-614.	27.8	275
8	Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nature Biotechnology, 2022, 40, 731-740.	17.5	230
9	Continuous evolution of base editors with expanded target compatibility and improved activity. Nature Biotechnology, 2019, 37, 1070-1079.	17.5	215
10	Massively parallel assessment of human variants with base editor screens. Cell, 2021, 184, 1064-1080.e20.	28.9	175
11	Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature, 2021, 595, 295-302.	27.8	175
12	Adenine base editing in an adult mouse model of tyrosinaemia. Nature Biomedical Engineering, 2020, 4, 125-130.	22.5	136
13	Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nature Biotechnology, 2021, 39, 1414-1425.	17.5	118
14	High-resolution specificity profiling and off-target prediction for site-specific DNA recombinases. Nature Communications, 2019, 10, 1937.	12.8	22
15	Mechanisms of angiogenic incompetence in Hutchinson–Gilford progeria via downregulation of endothelial NOS. Aging Cell, 2021, 20, e13388.	6.7	11
16	Base editor treats progeria in mice. Nature, 2021, , .	27.8	4