
DuÅjan Kopecký

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8528344/publications.pdf

Version: 2024-02-01

DULA:AN KODECKAIA

#	Article	IF	CITATIONS
1	Suitable ASP U-Net training algorithms for grasping point detection of nontrivial objects. , 2022, , .		0
2	Carboxyethyl-functionalized 3D porous polypyrrole synthesized using a porogen-free method for covalent immobilization of urease. Microporous and Mesoporous Materials, 2021, 311, 110690.	2.2	6
3	Memory Efficient Grasping Point Detection of Nontrivial Objects. IEEE Access, 2021, 9, 82130-82145.	2.6	7
4	Melamine Sponges Decorated with Polypyrrole Nanotubes as Macroporous Conducting Pressure Sensors. ACS Applied Nano Materials, 2021, 4, 7513-7519.	2.4	16
5	Conducting polypyrrole-coated macroporous melamine sponges: a simple toy or an advanced material?. Chemical Papers, 2021, 75, 5035-5055.	1.0	12
6	Elaboration and properties of nanofibrillated cellulose composites with polypyrrole nanotubes or their carbonized analogs. Synthetic Metals, 2021, 278, 116806.	2.1	14
7	Pressure-Sensitive Conducting and Antibacterial Materials Obtained by <i>in Situ</i> Dispersion Coating of Macroporous Melamine Sponges with Polypyrrole. ACS Omega, 2021, 6, 20895-20901.	1.6	12
8	New approach for the development of reduced graphene oxide/polyaniline nanocomposites via sacrificial surfactant-stabilized reduced graphene oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589, 124415.	2.3	13
9	Electromagnetic interference shielding of polypyrrole nanostructures. Synthetic Metals, 2020, 269, 116573.	2.1	37
10	One-Dimensional Nanostructures of Polypyrrole for Shielding of Electromagnetic Interference in the Microwave Region. International Journal of Molecular Sciences, 2020, 21, 8814.	1.8	15
11	Preparation of carbon-based monolithic CO2 adsorbents with hierarchical pore structure. Chemical Engineering Journal, 2020, 388, 124308.	6.6	13
12	Self-assembly of poly(L-lactide-co-glycolide) and magnetic nanoparticles into nanoclusters for controlled drug delivery. European Polymer Journal, 2020, 133, 109795.	2.6	15
13	Multi-scale analysis of amorphous solid dispersions prepared by freeze drying of ibuprofen loaded acrylic polymer nanoparticles. Journal of Drug Delivery Science and Technology, 2019, 53, 101182.	1.4	13
14	Urease adsorption immobilization on ionic liquid-like macroporous polymeric support. Journal of Materials Science, 2019, 54, 14884-14896.	1.7	6
15	Nanotubular polypyrrole: Reversibility of protonation/deprotonation cycles and long-term stability. European Polymer Journal, 2019, 115, 290-297.	2.6	21
16	Nitrogen-rich hierarchically porous polyaniline-based adsorbents for carbon dioxide (CO2) capture. Chemical Engineering Journal, 2019, 360, 1199-1212.	6.6	46
17	Synthesis of conductive macroporous composite polymeric materials using porogen-free method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 557, 137-145.	2.3	7
18	An environmentally benign methodology to elaborating polymer nanocomposites with tunable properties using core-shell nanoparticles and cellulose nanocrystals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 169-179.	2.3	4

DuÅian Kopecký

#	Article	IF	CITATIONS
19	Optimization routes for high electrical conductivity of polypyrrole nanotubes prepared in presence of methyl orange. Synthetic Metals, 2017, 230, 89-96.	2.1	43
20	Synthesis of silver-anchored polyaniline–chitosan magnetic nanocomposite: a smart system for catalysis. RSC Advances, 2017, 7, 18553-18560.	1.7	55
21	Amino-substituted Tröger's base: electrochemical polymerization and characterization of the polymer film. Electrochimica Acta, 2017, 224, 439-445.	2.6	7
22	The ageing of polypyrrole nanotubes synthesized with methyl orange. European Polymer Journal, 2017, 96, 176-189.	2.6	26
23	Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension. Scientific Reports, 2017, 7, 15068.	1.6	7
24	Dye-stimulated control of conducting polypyrrole morphology. RSC Advances, 2017, 7, 51495-51505.	1.7	25
25	Polypyrrole Nanotubes and Their Carbonized Analogs: Synthesis, Characterization, Gas Sensing Properties. Sensors, 2016, 16, 1917.	2.1	44
26	Polypyrrole salts and bases: superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Advances, 2016, 6, 88382-88391.	1.7	145
27	Application of polyaniline for potentiometric recognition of salicylate and its analogues. Electrochimica Acta, 2014, 115, 553-558.	2.6	10
28	Polypyrrole nanotubes: mechanism of formation. RSC Advances, 2014, 4, 1551-1558.	1.7	134
29	Laser deposition of sulfonated phthalocyanines for gas sensors. Applied Surface Science, 2014, 302, 37-41.	3.1	19
30	Polypyrrole–silver composites prepared by the reduction of silver ions with polypyrrole nanotubes. Polymer Chemistry, 2013, 4, 3610.	1.9	53
31	Adsorption–desorption noise in QCM gas sensors. Sensors and Actuators B: Chemical, 2012, 166-167, 264-268.	4.0	19
32	Noise in quartz crystal microbalance. , 2011, , .		1
33	Doped polypyrrole for MAPLE deposition: Synthesis and characterization. Synthetic Metals, 2010, 160, 1081-1085.	2.1	7
34	AC Analysis of Organocomplex Sensing Layer with Pd Catalyst. Sensor Letters, 2010, 8, 507-511.	0.4	3
35	Polypyrrole thin films for gas sensors prepared by Matrix-Assisted Pulsed Laser Evaporation technology: Effect of deposition parameters on material properties. Thin Solid Films, 2009, 517, 2083-2087.	0.8	21
36	Impedance properties of polypyrrolic sensors prepared by MAPLE technology. Sensors and Actuators B: Chemical, 2009, 137, 88-93.	4.0	16

#	Article	IF	CITATIONS
37	Modification of detection process on ZnO sensors by ultraviolet radiation. , 2009, , .		Ο
38	Polypyrrole active layers of gas sensors prepared by MAPLE technology. Journal of Physics: Conference Series, 2007, 76, 012044.	0.3	4
39	Deposition of organic metalocomplexes for sensor applications by MAPLE. Sensors and Actuators B: Chemical, 2007, 125, 189-194.	4.0	24
40	Thin organic layers prepared by MAPLE for gas sensor application. , 2006, , .		0