
Stéphane F Maison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8528302/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predicting neural deficits in sensorineural hearing loss from word recognition scores. Scientific Reports, 2022, 12, .	3.3	16
2	Envelope following responses predict speech-in-noise performance in normal-hearing listeners. Journal of Neurophysiology, 2021, 125, 1213-1222.	1.8	38
3	Preserving Wideband Tympanometry Information With Artifact Mitigation. Ear and Hearing, 2021, Publish Ahead of Print, .	2.1	2
4	Idiopathic Sudden Sensorineural Hearing Loss: Speech Intelligibility Deficits Following Threshold Recovery. Ear and Hearing, 2021, 42, 782-792.	2.1	7
5	The summating potential in human electrocochleography: Gaussian models and Fourier analysis. Journal of the Acoustical Society of America, 2021, 150, 2492-2502.	1.1	8
6	Middle Ear Muscle Reflex and Word Recognition in "Normal-Hearing―Adults: Evidence for Cochlear Synaptopathy?. Ear and Hearing, 2020, 41, 25-38.	2.1	67
7	Chronic Conductive Hearing Loss Is Associated With Speech Intelligibility Deficits in Patients With Normal Bone Conduction Thresholds. Ear and Hearing, 2020, 41, 500-507.	2.1	16
8	Electrophysiological markers of cochlear function correlate with hearing-in-noise performance among audiometrically normal subjects. Journal of Neurophysiology, 2020, 124, 418-431.	1.8	43
9	A Gain-of-Function Mutation in the α9 Nicotinic Acetylcholine Receptor Alters Medial Olivocochlear Efferent Short-Term Synaptic Plasticity. Journal of Neuroscience, 2018, 38, 3939-3954.	3.6	22
10	Effects of cochlear synaptopathy on middle-ear muscle reflexes in unanesthetized mice. Hearing Research, 2018, 363, 109-118.	2.0	70
11	Ethical considerations in noise-induced hearing loss research. Lancet, The, 2017, 390, 920-922.	13.7	4
12	Toward a Differential Diagnosis of Hidden Hearing Loss in Humans. PLoS ONE, 2016, 11, e0162726.	2.5	449
13	Oncomodulin, an EF-Hand Ca ²⁺ Buffer, Is Critical for Maintaining Cochlear Function in Mice. Journal of Neuroscience, 2016, 36, 1631-1635.	3.6	47
14	Perinatal thiamine deficiency causes cochlear innervation abnormalities in mice. Hearing Research, 2016, 335, 94-104.	2.0	9
15	Type II Cochlear Ganglion Neurons Do Not Drive the Olivocochlear Reflex: Re-Examination of the Cochlear Phenotype in Peripherin Knock-Out Mice. ENeuro, 2016, 3, ENEURO.0207-16.2016.	1.9	33
16	Chronic Conductive Hearing Loss Leads to Cochlear Degeneration. PLoS ONE, 2015, 10, e0142341.	2.5	49
17	Efferent Feedback Slows Cochlear Aging. Journal of Neuroscience, 2014, 34, 4599-4607.	3.6	116
18	Olivocochlear Innervation Maintains the Normal Modiolar-Pillar and Habenular-Cuticular Gradients in Cochlear Synaptic Morphology. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 571-583.	1.8	72

#	Article	IF	CITATIONS
19	Efferent Feedback Minimizes Cochlear Neuropathy from Moderate Noise Exposure. Journal of Neuroscience, 2013, 33, 5542-5552.	3.6	187
20	Olivocochlear suppression of outer hair cells in vivo: evidence for combined action of BK and SK2 channels throughout the cochlea. Journal of Neurophysiology, 2013, 109, 1525-1534.	1.8	44
21	Dopaminergic Signaling in the Cochlea: Receptor Expression Patterns and Deletion Phenotypes. Journal of Neuroscience, 2012, 32, 344-355.	3.6	80
22	Contralateral-noise effects on cochlear responses in anesthetized mice are dominated by feedback from an unknown pathway. Journal of Neurophysiology, 2012, 108, 491-500.	1.8	16
23	Sound-Evoked Olivocochlear Activation in Unanesthetized Mice. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 209-217.	1.8	54
24	Mice Lacking Adrenergic Signaling Have Normal Cochlear Responses and Normal Resistance to Acoustic Injury but Enhanced Susceptibility to Middle-Ear Infection. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 449-461.	1.8	18
25	Muscarinic Signaling in the Cochlea: Presynaptic and Postsynaptic Effects on Efferent Feedback and Afferent Excitability. Journal of Neuroscience, 2010, 30, 6751-6762.	3.6	27
26	A Point Mutation in the Hair Cell Nicotinic Cholinergic Receptor Prolongs Cochlear Inhibition and Enhances Noise Protection. PLoS Biology, 2009, 7, e1000018.	5.6	109
27	Loss of GABAB Receptors in Cochlear Neurons: Threshold Elevation Suggests Modulation of Outer Hair Cell Function by Type II Afferent Fibers. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 50-63.	1.8	30
28	SK2 channels are required for function and long-term survival of efferent synapses on mammalian outer hair cells. Molecular and Cellular Neurosciences, 2009, 40, 39-49.	2.2	42
29	Orphan Glutamate Receptor δ1 Subunit Required for High-Frequency Hearing. Molecular and Cellular Biology, 2007, 27, 4500-4512.	2.3	53
30	The α10 nicotinic acetylcholine receptor subunit is required for normal synaptic function and integrity of the olivocochlear system. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20594-20599.	7.1	121
31	A Novel Effect of Cochlear Efferents: In Vivo Response Enhancement Does Not Require α9 Cholinergic Receptors. Journal of Neurophysiology, 2007, 97, 3269-3278.	1.8	41
32	Selective Removal of Lateral Olivocochlear Efferents Increases Vulnerability to Acute Acoustic Injury. Journal of Neurophysiology, 2007, 97, 1775-1785.	1.8	106
33	Overexpression of SK2 Channels Enhances Efferent Suppression of Cochlear Responses Without Enhancing Noise Resistance. Journal of Neurophysiology, 2007, 97, 2930-2936.	1.8	26
34	Cochlear efferent feedback balances interaural sensitivity. Nature Neuroscience, 2006, 9, 1474-1476.	14.8	130
35	Functional Role of GABAergic Innervation of the Cochlea: Phenotypic Analysis of Mice Lacking GABAA Receptor Subunits Â1, Â2, Â5, Â6, beta2, beta3, or Â. Journal of Neuroscience, 2006, 26, 10315-10326.	3.6	75
36	Olivocochlear innervation in the mouse: Immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization. Journal of Comparative Neurology, 2003, 455, 406-416.	1.6	168

#	Article	IF	CITATIONS
37	Loss of αCGRP Reduces Sound-Evoked Activity in the Cochlear Nerve. Journal of Neurophysiology, 2003, 90, 2941-2949.	1.8	63
38	Efferent Protection from Acoustic Injury Is Mediated via α9 Nicotinic Acetylcholine Receptors on Outer Hair Cells. Journal of Neuroscience, 2002, 22, 10838-10846.	3.6	122
39	Predicting Vulnerability to Acoustic Injury with a Noninvasive Assay of Olivocochlear Reflex Strength. Journal of Neuroscience, 2000, 20, 4701-4707.	3.6	278