Christian Engwerda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8528229/publications.pdf

Version: 2024-02-01

164 papers 10,262 citations

23500 58 h-index 93 g-index

270 all docs

 $\begin{array}{c} 270 \\ \text{docs citations} \end{array}$

times ranked

270

11706 citing authors

#	Article	IF	CITATIONS
1	Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nature lmmunology, $2017,18,1004$ - $1015.$	7.0	504
2	Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves T _H 1/T _{FH} fate bifurcation in malaria. Science Immunology, 2017, 2, .	5.6	258
3	Dendritic cells, but not macrophages, produce IL-12 immediately followingLeishmania donovani infection. European Journal of Immunology, 1998, 28, 687-695.	1.6	251
4	Locally Up-regulated Lymphotoxin \hat{l}_{\pm} , Not Systemic Tumor Necrosis Factor \hat{l}_{\pm} , Is the Principle Mediator of Murine Cerebral Malaria. Journal of Experimental Medicine, 2002, 195, 1371-1377.	4.2	235
5	Recipient nonhematopoietic antigen-presenting cells are sufficient to induce lethal acute graft-versus-host disease. Nature Medicine, 2012, 18, 135-142.	15.2	206
6	The immunopathology of experimental visceral leishmaniasis. Immunological Reviews, 2004, 201, 239-253.	2.8	200
7	Balancing immunity and pathology in visceral leishmaniasis. Immunology and Cell Biology, 2007, 85, 138-147.	1.0	198
8	Bone marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar biological functions. Journal of Hepatology, 2016, 65, 758-768.	1.8	197
9	B Cell-Deficient Mice Are Highly Resistant to <i>Leishmania</i> â€^ <i>donovani</i> Infection, but Develop Neutrophil-Mediated Tissue Pathology. Journal of Immunology, 2000, 164, 3681-3688.	0.4	182
10	Granzyme B Expression by CD8+ T Cells Is Required for the Development of Experimental Cerebral Malaria. Journal of Immunology, 2011, 186, 6148-6156.	0.4	178
11	Organ-specific immune responses associated with infectious disease. Trends in Immunology, 2000, 21, 73-78.	7.5	174
12	CSF-1–dependant donor-derived macrophages mediate chronic graft-versus-host disease. Journal of Clinical Investigation, 2014, 124, 4266-4280.	3.9	173
13	The importance of the spleen in malaria. Trends in Parasitology, 2005, 21, 75-80.	1.5	171
14	Defective CCR7 expression on dendritic cells contributes to the development of visceral leishmaniasis. Nature Immunology, 2002, 3, 1185-1191.	7.0	168
15	Experimental hookworm infection and gluten microchallenge promote tolerance in celiac disease. Journal of Allergy and Clinical Immunology, 2015, 135, 508-516.e5.	1.5	163
16	DEVELOPMENT AND REGULATION OF CELL-MEDIATED IMMUNE RESPONSES TO THE BLOOD STAGES OF MALARIA: Implications for Vaccine Research. Annual Review of Immunology, 2005, 23, 69-99.	9.5	162
17	Neutralization of IL-12 demonstrates the existence of discrete organ-specific phases in the control of Leishmania donovani. European Journal of Immunology, 1998, 28, 669-680.	1.6	159
18	IFN \hat{l}^3 differentially controls the development of idiopathic pneumonia syndrome and GVHD of the gastrointestinal tract. Blood, 2007, 110, 1064-1072.	0.6	159

#	Article	IF	CITATIONS
19	Hookworm Secreted Extracellular Vesicles Interact With Host Cells and Prevent Inducible Colitis in Mice. Frontiers in Immunology, 2018, 9, 850.	2.2	159
20	Macrophages, pathology and parasite persistence in experimental visceral leishmaniasis. Trends in Parasitology, 2004, 20, 524-530.	1.5	156
21	A Role for Natural Regulatory T Cells in the Pathogenesis of Experimental Cerebral Malaria. American Journal of Pathology, 2007, 171, 548-559.	1.9	155
22	Immune-Mediated Mechanisms of Parasite Tissue Sequestration during Experimental Cerebral Malaria. Journal of Immunology, 2010, 185, 3632-3642.	0.4	155
23	Vaccines to prevent leishmaniasis. Clinical and Translational Immunology, 2014, 3, e13.	1.7	142
24	BET inhibition blocks inflammation-induced cardiac dysfunction and SARS-CoV-2 infection. Cell, 2021, 184, 2167-2182.e22.	13.5	131
25	A Role for Tumor Necrosis Factor-α in Remodeling the Splenic Marginal Zone during Leishmania donovani Infection. American Journal of Pathology, 2002, 161, 429-437.	1.9	130
26	IP-10-Mediated T Cell Homing Promotes Cerebral Inflammation over Splenic Immunity to Malaria Infection. PLoS Pathogens, 2009, 5, e1000369.	2.1	127
27	Hookworm recombinant protein promotes regulatory T cell responses that suppress experimental asthma. Science Translational Medicine, 2016, 8, 362ra143.	5.8	123
28	Myeloma escape after stem cell transplantation is a consequence of T-cell exhaustion and is prevented by TIGIT blockade. Blood, 2018, 132, 1675-1688.	0.6	119
29	Parasite-Dependent Expansion of TNF Receptor II–Positive Regulatory T Cells with Enhanced Suppressive Activity in Adults with Severe Malaria. PLoS Pathogens, 2009, 5, e1000402.	2.1	118
30	Eomesodermin promotes the development of type 1 regulatory T (T <code>_R</code> 1) cells. Science Immunology, 2017, 2, .	5.6	118
31	Identification and expansion of highly suppressive CD8+FoxP3+ regulatory T cells after experimental allogeneic bone marrow transplantation. Blood, 2012, 119, 5898-5908.	0.6	114
32	Immune Regulation during Chronic Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2014, 8, e2914.	1.3	112
33	Characterising the Mucosal and Systemic Immune Responses to Experimental Human Hookworm Infection. PLoS Pathogens, 2012, 8, e1002520.	2.1	110
34	The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nature Immunology, 2020, 21, 1205-1218.	7.0	110
35	Suppression of Inflammatory Immune Responses in Celiac Disease by Experimental Hookworm Infection. PLoS ONE, 2011, 6, e24092.	1.1	105
36	Cutting Edge: Conventional Dendritic Cells Are the Critical APC Required for the Induction of Experimental Cerebral Malaria. Journal of Immunology, 2007, 178, 6033-6037.	0.4	104

#	Article	IF	Citations
37	Experimental models of cerebral malaria. Current Topics in Microbiology and Immunology, 2005, 297, 103-43.	0.7	103
38	Recent insights into humoral and cellular immune responses against malaria. Trends in Parasitology, 2008, 24, 578-584.	1.5	100
39	CD4+ Natural Regulatory T Cells Prevent Experimental Cerebral Malaria via CTLA-4 When Expanded In Vivo. PLoS Pathogens, 2010, 6, e1001221.	2.1	98
40	Type I interferons suppress CD4 ⁺ Tâ€cellâ€dependent parasite control during bloodâ€stage <i>Plasmodium</i> infection. European Journal of Immunology, 2011, 41, 2688-2698.	1.6	98
41	The Lymphotoxin Pathway Regulates Aire-Independent Expression of Ectopic Genes and Chemokines in Thymic Stromal Cells. Journal of Immunology, 2008, 180, 5384-5392.	0.4	96
42	Type I IFN signaling in CD8– DCs impairs Th1-dependent malaria immunity. Journal of Clinical Investigation, 2014, 124, 2483-2496.	3.9	96
43	Apoptosis and dysfunction of blood dendritic cells in patients with falciparum and vivax malaria. Journal of Experimental Medicine, 2013, 210, 1635-1646.	4.2	94
44	IgM in human immunity to <i>Plasmodium falciparum</i> malaria. Science Advances, 2019, 5, eaax4489.	4.7	92
45	Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology. PLoS Pathogens, 2016, 12, e1005398.	2.1	92
46	Type I Interferons Regulate Immune Responses in Humans with Blood-Stage Plasmodium falciparum Infection. Cell Reports, 2016, 17, 399-412.	2.9	88
47	Murine cerebral malaria: the whole story. Trends in Parasitology, 2010, 26, 272-274.	1.5	87
48	The Role of IL-10 in Malaria: A Double Edged Sword. Frontiers in Immunology, 2019, 10, 229.	2,2	87
49	Donor colonic CD103+ dendritic cells determine the severity of acute graft-versus-host disease. Journal of Experimental Medicine, 2015, 212, 1303-1321.	4.2	85
50	Leishmania donovani infection initiates T cell-independent chemokine responses, which are subsequently amplified in a T cell-dependent manner. European Journal of Immunology, 1999, 29, 203-214.	1.6	80
51	Enhanced Hematopoietic Activity Accompanies Parasite Expansion in the Spleen and Bone Marrow of Mice Infected with Leishmania donovani. Infection and Immunity, 2000, 68, 1840-1848.	1.0	80
52	Bromelain Modulates T Cell and B Cell Immune Responses in Vitro and in Vivo. Cellular Immunology, 2001, 210, 66-75.	1.4	77
53	Cross-species malaria immunity induced by chemically attenuated parasites. Journal of Clinical Investigation, 2013, 123, 3353-3362.	3.9	75
54	Experimental Models of Cerebral Malaria., 2005, , 103-143.		73

#	Article	IF	CITATIONS
55	Low doses of killed parasite in CpG elicit vigorous CD4+ T cell responses against blood-stage malaria in mice. Journal of Clinical Investigation, 2010, 120, 2967-2978.	3.9	70
56	Distinct Roles for Lymphotoxin-α and Tumor Necrosis Factor in the Control of Leishmania donovani Infection. American Journal of Pathology, 2004, 165, 2123-2133.	1.9	69
57	CD8+ T Cells from a Novel T Cell Receptor Transgenic Mouse Induce Liver-Stage Immunity That Can Be Boosted by Blood-Stage Infection in Rodent Malaria. PLoS Pathogens, 2014, 10, e1004135.	2.1	68
58	Infection-induced plasmablasts are a nutrient sink that impairs humoral immunity to malaria. Nature Immunology, 2020, 21, 790-801.	7.0	67
59	Leishmania donovani infection of bone marrow stromal macrophages selectively enhances myelopoiesis, by a mechanism involving GM-CSF and TNF-α. Blood, 2000, 95, 1642-1651.	0.6	64
60	Induction of natural killer T cell–dependent alloreactivity by administration of granulocyte colony–stimulating factor after bone marrow transplantation. Nature Medicine, 2009, 15, 436-441.	15.2	64
61	Experimentally induced blood stage malaria infection as a tool for clinical research. Trends in Parasitology, 2012, 28, 515-521.	1.5	60
62	Attenuation of TCR-induced transcription by Bach2 controls regulatory T cell differentiation and homeostasis. Nature Communications, 2020, 11, 252.	5.8	59
63	Low-Level Plasmodium falciparum Blood-Stage Infection Causes Dendritic Cell Apoptosis and Dysfunction in Healthy Volunteers. Journal of Infectious Diseases, 2012, 206, 333-340.	1.9	57
64	Bromelain Activates Murine Macrophages and Natural Killer Cells in Vitro. Cellular Immunology, 2001, 210, 5-10.	1.4	54
65	Activation of Invariant NKT Cells Exacerbates Experimental Visceral Leishmaniasis. PLoS Pathogens, 2008, 4, e1000028.	2.1	53
66	IFNAR1-Signalling Obstructs ICOS-mediated Humoral Immunity during Non-lethal Blood-Stage Plasmodium Infection. PLoS Pathogens, 2016, 12, e1005999.	2.1	52
67	High Parasite Burdens Cause Liver Damage in Mice following Plasmodium berghei ANKA Infection Independently of CD8 ⁺ T Cell-Mediated Immune Pathology. Infection and Immunity, 2011, 79, 1882-1888.	1.0	51
68	Macrophage migration inhibitory factor of the parasitic nematode Trichinella spiralis. Biochemical Journal, 2001, 357, 373.	1.7	50
69	CD95 is required for the early control of parasite burden in the liver ofLeishmania donovani-infected mice. European Journal of Immunology, 2001, 31, 1199-1210.	1.6	49
70	Soluble lymphotoxin is an important effector molecule in GVHD and GVL. Blood, 2010, 115, 122-132.	0.6	49
71	Anin VivoAnalysis of Cytokine Production duringLeishmania donovanilnfection inscidMice. Experimental Parasitology, 1996, 84, 195-202.	0.5	48
72	Interactions between malaria parasites and the host immune system. Current Opinion in Immunology, 2005, 17, 381-387.	2.4	47

#	Article	IF	Citations
73	Graft-versus-Host Disease Prevents the Maturation of Plasmacytoid Dendritic Cells. Journal of Immunology, 2009, 182, 912-920.	0.4	47
74	The Regulation of CD4+ T Cell Responses during Protozoan Infections. Frontiers in Immunology, 2014, 5, 498.	2.2	45
75	Plasmodium berghei ANKA (PbA) Infection of C57BL/6J Mice: A Model of Severe Malaria. Methods in Molecular Biology, 2013, 1031, 203-213.	0.4	44
76	Common Strategies To Prevent and Modulate Experimental Cerebral Malaria in Mouse Strains with Different Susceptibilities. Infection and Immunity, 2008, 76, 3312-3320.	1.0	43
77	Autophagy-dependent regulatory T cells are critical for the control of graft-versus-host disease. JCI Insight, 2016, 1, e86850.	2.3	43
78	Transcriptome dynamics of CD4+ T cells during malaria maps gradual transit from effector to memory. Nature Immunology, 2020, 21, 1597-1610.	7.0	43
79	CD8+ T Lymphocyte-Mediated Loss of Marginal Metallophilic Macrophages following Infection with <i>Plasmodium chabaudi chabaudi AS</i> . Journal of Immunology, 2006, 177, 2518-2526.	0.4	42
80	The Schistosoma mansoni Hepatic Egg Granuloma Provides a Favorable Microenvironment for Sustained Growth of Leishmania donovani. American Journal of Pathology, 2006, 169, 943-953.	1.9	40
81	VCAM-1 and VLA-4 Modulate Dendritic Cell IL-12p40 Production in Experimental Visceral Leishmaniasis. PLoS Pathogens, 2008, 4, e1000158.	2.1	39
82	UVB-Induced Melanocyte Proliferation in Neonatal Mice Driven by CCR2-Independent Recruitment of Ly6clowMHCIIhi Macrophages. Journal of Investigative Dermatology, 2013, 133, 1803-1812.	0.3	34
83	Distinct Roles for CD4+ Foxp3+ Regulatory T Cells and IL-10–Mediated Immunoregulatory Mechanisms during Experimental Visceral Leishmaniasis Caused by ⟨i⟩Leishmania donovani⟨/i⟩. Journal of Immunology, 2018, 201, 3362-3372.	0.4	34
84	Type I Interferons Suppress Anti-parasitic Immunity and Can Be Targeted to Improve Treatment of Visceral Leishmaniasis. Cell Reports, 2020, 30, 2512-2525.e9.	2.9	34
85	Combined Immune Therapy for the Treatment of Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2016, 10, e0004415.	1.3	33
86	Immune Checkpoint Targets for Host-Directed Therapy to Prevent and Treat Leishmaniasis. Frontiers in Immunology, 2017, 8, 1492.	2.2	33
87	Immune insufficiency during GVHD is due to defective antigen presentation within dendritic cell subsets. Blood, 2012, 119, 5918-5930.	0.6	32
88	Gammaherpesvirus Co-infection with Malaria Suppresses Anti-parasitic Humoral Immunity. PLoS Pathogens, 2015, 11, e1004858.	2.1	31
89	IFN Regulatory Factor 3 Balances Th1 and T Follicular Helper Immunity during Nonlethal Blood-Stage <i>Plasmodium</i> Infection. Journal of Immunology, 2018, 200, 1443-1456.	0.4	31
90	Genetic variation in tumour necrosis factor and lymphotoxin is not associated with endometriosis in an Australian sample. Human Reproduction, 2007, 22, 2389-2397.	0.4	29

#	Article	IF	Citations
91	The regulation of CD4 + T cells during malaria. Immunological Reviews, 2020, 293, 70-87.	2.8	29
92	Development of Leishmania vaccines in the era of visceral leishmaniasis elimination. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2015, 109, 423-424.	0.7	28
93	TNF family members and malaria: Old observations, new insights and future directions. Experimental Parasitology, 2010, 126, 326-331.	0.5	27
94	Preserved Dendritic Cell HLA-DR Expression and Reduced Regulatory T Cell Activation in Asymptomatic Plasmodium falciparum and P. vivax Infection. Infection and Immunity, 2015, 83, 3224-3232.	1.0	27
95	Cutting Edge: Selective Blockade of LIGHT-Lymphotoxin \hat{I}^2 Receptor Signaling Protects Mice from Experimental Cerebral Malaria Caused by <i>Plasmodium berghei</i> ANKA. Journal of Immunology, 2008, 181, 7458-7462.	0.4	26
96	Critical Roles for LIGHT and Its Receptors in Generating T Cell-Mediated Immunity during Leishmania donovani Infection. PLoS Pathogens, 2011, 7, e1002279.	2.1	26
97	The diverse roles of monocytes in inflammation caused by protozoan parasitic diseases. Trends in Parasitology, 2012, 28, 408-416.	1.5	26
98	Effect of Mature Blood-Stage Plasmodium Parasite Sequestration on Pathogen Biomass in Mathematical and <i>In Vivo</i> Models of Malaria. Infection and Immunity, 2014, 82, 212-220.	1.0	26
99	Th2-like T Follicular Helper Cells Promote Functional Antibody Production during Plasmodium falciparum Infection. Cell Reports Medicine, 2020, 1, 100157.	3.3	26
100	IL-17A–Producing Î ³ δT Cells Suppress Early Control of Parasite Growth by Monocytes in the Liver. Journal of Immunology, 2015, 195, 5707-5717.	0.4	25
101	An Age-Related Decrease in Rescue from T Cell Death Following Costimulation Mediated by CD28. Cellular Immunology, 1996, 170, 141-148.	1.4	24
102	Plasmacytoid dendritic cells appear inactive during sub-microscopic Plasmodium falciparum blood-stage infection, yet retain their ability to respond to TLR stimulation. Scientific Reports, 2017, 7, 2596.	1.6	24
103	Tissue Requirements for Establishing Long-Term CD4+ T Cell–Mediated Immunity following <i>Leishmania donovani</i> Infection. Journal of Immunology, 2014, 192, 3709-3718.	0.4	23
104	The Impact of Established Immunoregulatory Networks on Vaccine Efficacy and the Development of Immunity to Malaria. Journal of Immunology, 2016, 197, 4518-4526.	0.4	23
105	Defying malaria: Arming T cells to halt malaria. Nature Medicine, 2011, 17, 49-51.	15.2	22
106	Profoundly Reduced CD1c ⁺ Myeloid Dendritic Cell HLA-DR and CD86 Expression and Increased Tumor Necrosis Factor Production in Experimental Human Blood-Stage Malaria Infection. Infection and Immunity, 2016, 84, 1403-1412.	1.0	22
107	Early Immune Regulatory Changes in a Primary Controlled Human Plasmodium vivax Infection: CD1c ⁺ Myeloid Dendritic Cell Maturation Arrest, Induction of the Kynurenine Pathway, and Regulatory T Cell Activation. Infection and Immunity, 2017, 85, .	1.0	22
108	Spatiotemporal requirements for IRF7 in mediating type I IFNâ€dependent susceptibility to bloodâ€stage ⟨i⟩Plasmodium⟨/i⟩ infection. European Journal of Immunology, 2015, 45, 130-141.	1.6	21

#	Article	IF	CITATIONS
109	Vaccination of human participants with attenuated Necator americanus hookworm larvae and human challenge in Australia: a dose-finding study and randomised, placebo-controlled, phase 1 trial. Lancet Infectious Diseases, The, 2021, 21, 1725-1736.	4.6	21
110	Coinfection with Blood-Stage Plasmodium Promotes Systemic Type I Interferon Production during Pneumovirus Infection but Impairs Inflammation and Viral Control in the Lung. Vaccine Journal, 2015, 22, 477-483.	3.2	20
111	Isolation and sequence of sheep immunoglobulin E heavy-chain complementary DNA. Veterinary Immunology and Immunopathology, 1992, 34, 115-126.	0.5	18
112	Laser microdissection microscopy in parasitology: microscopes meet thermocyclers. Trends in Parasitology, 2004, 20, 502-506.	1.5	18
113	Therapeutic Glucocorticoid-Induced TNF Receptor-Mediated Amplification of CD4+T Cell Responses Enhances Antiparasitic Immunity. Journal of Immunology, 2010, 184, 2583-2592.	0.4	17
114	Early Changes in CD4+ T-Cell Activation During Blood-Stage Plasmodium falciparum Infection. Journal of Infectious Diseases, 2018, 218, 1119-1129.	1.9	17
115	Peripheral Blood Monocytes With an Antiinflammatory Phenotype Display Limited Phagocytosis and Oxidative Burst in Patients With Visceral Leishmaniasis. Journal of Infectious Diseases, 2018, 218, 1130-1141.	1.9	17
116	Plasmodium falciparum Activates CD16+ Dendritic Cells to Produce Tumor Necrosis Factor and Interleukin-10 in Subpatent Malaria. Journal of Infectious Diseases, 2019, 219, 660-671.	1.9	17
117	Amphiregulin in cellular physiology, health, and disease: Potential use as a biomarker and therapeutic target. Journal of Cellular Physiology, 2022, 237, 1143-1156.	2.0	17
118	Rapid loss of group 1 innate lymphoid cells during blood stage Plasmodium infection. Clinical and Translational Immunology, 2018, 7, e1003.	1.7	16
119	NKG7 Is Required for Optimal Antitumor T-cell Immunity. Cancer Immunology Research, 2022, 10, 154-161.	1.6	16
120	Ovalbumin lipid core peptide vaccines and their CD4+ and CD8+ T cell responses. Vaccine, 2014, 32, 4743-4750.	1.7	15
121	IL-27 signalling regulates glycolysis in Th1 cells to limit immunopathology during infection. PLoS Pathogens, 2020, 16, e1008994.	2.1	15
122	Ageâ€Related Susceptibility to Severe Malaria Associated with Galectinâ€⊋ in Highland Papuans. Journal of Infectious Diseases, 2010, 202, 117-124.	1.9	13
123	A study of the TNF/LTA/LTB locus and susceptibility to severe malaria in highland papuan children and adults. Malaria Journal, 2010, 9, 302.	0.8	13
124	Mast cells fuel the fire of malaria immunopathology. Nature Medicine, 2013, 19, 672-674.	15.2	13
125	Transcriptional profiling and immunophenotyping show sustained activation of blood monocytes in subpatent <i>Plasmodium falciparum</i> infection. Clinical and Translational Immunology, 2020, 9, e1144.	1.7	13
126	Characterization of blood dendritic and regulatory T cells in asymptomatic adults with sub-microscopic Plasmodium falciparum or Plasmodium vivax infection. Malaria Journal, 2016, 15, 328.	0.8	12

#	Article	IF	CITATIONS
127	A molecular signature for CD8 ⁺ T cells from visceral leishmaniasis patients. Parasite Immunology, 2019, 41, e12669.	0.7	12
128	Cytokines and splenic remodelling during Leishmania donovani infection. Cytokine: X, 2020, 2, 100036.	0.5	12
129	Human T cell recognition of the blood stage antigen Plasmodium hypoxanthine guanine xanthine phosphoribosyl transferase (HGXPRT) in acute malaria. Malaria Journal, 2009, 8, 122.	0.8	10
130	Tumor necrosis factor alpha neutralization has no direct effect on parasite burden, but causes impaired IFN-Î ³ production by spleen cells from human visceral leishmaniasis patients. Cytokine, 2016, 85, 184-190.	1.4	10
131	Where Have All the Parasites Gone? Modelling Early Malaria Parasite Sequestration Dynamics. PLoS ONE, 2013, 8, e55961.	1.1	9
132	Plasmodium berghei bio-burden correlates with parasite lactate dehydrogenase: application to murine Plasmodium diagnostics. Malaria Journal, 2016, 15, 3.	0.8	9
133	Galectin-1 Impairs the Generation of Anti-Parasitic Th1 Cell Responses in the Liver during Experimental Visceral Leishmaniasis. Frontiers in Immunology, 2017, 8, 1307.	2.2	9
134	IgE, TNFÎ $_{\pm}$, IL1 Î $_{2}$, IL4 and IFNÎ $_{3}$ gene polymorphisms in sheep selected for resistance to fleece rot and flystrike. International Journal for Parasitology, 1996, 26, 787-791.	1.3	8
135	Interleukin 2 is an Upstream Regulator of CD4+ T Cells From Visceral Leishmaniasis Patients With Therapeutic Potential. Journal of Infectious Diseases, 2019, 220, 163-173.	1.9	8
136	Lymphotoxin alpha and tumour necrosis factor are not required for control of parasite growth, but differentially regulate cytokine production during Plasmodium chabaudi chabaudi AS infection. Parasite Immunology, 2007, 29, 153-158.	0.7	7
137	Experimental Asexual Blood Stage Malaria Immunity. Current Protocols in Immunology, 2011, 93, Unit 19.4.	3.6	7
138	Immunity to Visceral Leishmaniasis. Journal of Tropical Medicine, 2012, 2012, 1-2.	0.6	7
139	Loss of complement regulatory proteins on red blood cells in mild malarial anaemia and in Plasmodium falciparum induced blood-stage infection. Malaria Journal, 2019, 18, 312.	0.8	7
140	Systemic administration of IL $\hat{a}\in 33$ induces a population of circulating KLRG1 hi type 2 innate lymphoid cells and inhibits type 1 innate immunity against multiple myeloma. Immunology and Cell Biology, 2021, 99, 65-83.	1.0	7
141	ASC Modulates CTL Cytotoxicity and Transplant Outcome Independent of the Inflammasome. Cancer Immunology Research, 2020, 8, 1085-1098.	1.6	6
142	Safety, infectivity and immunogenicity of a genetically attenuated blood-stage malaria vaccine. BMC Medicine, 2021, 19, 293.	2.3	6
143	The isolation and sequence of sheep interleukin 4. DNA Sequence, 1992, 3, 111-113.	0.7	5
144	The Role of BACH2 in T Cells in Experimental Malaria Caused by Plasmodium chabaudi chabaudi AS. Frontiers in Immunology, 2018, 9, 2578.	2,2	5

#	Article	IF	CITATIONS
145	Anti–Interleukin-10 Unleashes Transcriptional Response to Leishmanial Antigens in Visceral Leishmaniasis Patients. Journal of Infectious Diseases, 2021, 223, 517-521.	1.9	5
146	Increased amphiregulin expression by CD4 ⁺ T cells from individuals with asymptomatic <i>Leishmania donovani</i> infection. Clinical and Translational Immunology, 2022, 11, .	1.7	5
147	An Antioxidant Link between Sickle Cell Disease and Severe Malaria. Cell, 2011, 145, 335-336.	13.5	4
148	Platelets Kill the Parasite Within. Science, 2012, 338, 1304-1305.	6.0	4
149	Hepatocytes break the silence during liver-stage malaria. Nature Medicine, 2014, 20, 17-19.	15.2	4
150	Reduced circulating dendritic cells in acute Plasmodium knowlesi and Plasmodium falciparum malaria despite elevated plasma Flt3 ligand levels. Malaria Journal, 2021, 20, 97.	0.8	3
151	Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection., 1998, 28, 687.		3
152	Murine Leishmaniasis., 0,, 117-146.		3
153	Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of Co-administered Ruxolitinib and Artemether-Lumefantrine in Healthy Adults. Antimicrobial Agents and Chemotherapy, 2021, , AAC0158421.	1.4	3
154	Disarming the malaria parasite. Nature Medicine, 2008, 14, 912-913.	15.2	1
155	ASI 2009: Immunology "down under― European Journal of Immunology, 2009, 39, 1989-1990.	1.6	1
156	A novel pathway of haematopoiesis revealed after experimental malaria infection. Immunology and Cell Biology, 2010, 88, 692-694.	1.0	1
157	Innate Lymphocytes and Malaria – Players or Spectators?. Trends in Parasitology, 2019, 35, 154-162.	1.5	1
158	Malaria thriving on steroids. Nature Metabolism, 2021, 3, 892-893.	5.1	1
159	Parasites and the immune system: a perspective from down under Parasite Immunology, 2010, 32, no-no.	0.7	0
160	Corrigendum to: The diverse roles of monocytes in inflammation caused by protozoan parasitic diseases. Trends in Parasitology, 2013, 29, 263.	1.5	0
161	A new era of rational malaria vaccine development. Immunology and Cell Biology, 2020, 98, 620-622.	1.0	0
162	A Molecular Signature for Il-10-Producing Th1 Cells in Protozoan Parasitic Diseases. SSRN Electronic Journal, 0, , .	0.4	0

ı	#	Article	lF	CITATIONS
	163	Soluble Lymphotoxin Plays a Critical Role in Acute Graft-Versus-Host Disease. Blood, 2008, 112, 3510-3510.	0.6	0
	164	Immunomodulation in Malaria. , 2018, , 1-13.		0