List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8528103/publications.pdf Version: 2024-02-01

MINLEE

#	Article	IF	CITATIONS
1	The ERα/KDM6B regulatory axis modulates osteogenic differentiation in human mesenchymal stem cells. Bone Research, 2022, 10, 3.	5.4	12
2	Three interfaces of the dental implant system and their clinical effects on hard and soft tissues. Materials Horizons, 2022, 9, 1387-1411.	6.4	21
3	Local delivery of a CXCR3 antagonist decreases the progression of bone resorption induced by LPS injection in a murine model. Clinical Oral Investigations, 2022, 26, 5163-5169.	1.4	1
4	Oxygen-Enriched Osteoinductive Nanoerythrocytes Augment Cell Survival and Osteogenic Differentiation for Bone Regeneration. Chemistry of Materials, 2022, 34, 5808-5820.	3.2	2
5	Trb3 controls mesenchymal stem cell lineage fate and enhances bone regeneration by scaffold-mediated local gene delivery. Biomaterials, 2021, 264, 120445.	5.7	24
6	Enhanced Osteoinductivity of Demineralized Bone Matrix with Noggin Suppression in Polymer Matrix. Advanced Biology, 2021, 5, e202000135.	1.4	5
7	Development of a Biomaterial Scaffold Integrated with Osteoinductive Oxysterol Liposomes to Enhance Hedgehog Signaling and Bone Repair. Molecular Pharmaceutics, 2021, 18, 1677-1689.	2.3	19
8	Sulfonate Hydrogel–siRNA Conjugate Facilitates Osteogenic Differentiation of Mesenchymal Stem Cells by Controlled Gene Silencing and Activation of BMP Signaling. ACS Applied Bio Materials, 2021, 4, 5189-5200.	2.3	5
9	Bioactive Scaffolds Integrated with Liposomal or Extracellular Vesicles for Bone Regeneration. Bioengineering, 2021, 8, 137.	1.6	30
10	Co-delivery of simvastatin and demineralized bone matrix hierarchically from nanosheet-based supramolecular hydrogels for osteogenesis. Journal of Materials Chemistry B, 2021, 9, 7741-7750.	2.9	9
11	Systemic DKK1 neutralization enhances human adipose-derived stem cell mediated bone repair. Stem Cells Translational Medicine, 2021, 10, 610-622.	1.6	17
12	Inspired by Nature: Facile Design of Nanoclay–Organic Hydrogel Bone Sealant with Multifunctional Properties for Robust Bone Regeneration. Advanced Functional Materials, 2020, 30, 2003717.	7.8	81
13	Generation of Small RNA-Modulated Exosome Mimetics for Bone Regeneration. ACS Nano, 2020, 14, 11973-11984.	7.3	119
14	Rational Design of Hydrogels to Enhance Osteogenic Potential. Chemistry of Materials, 2020, 32, 9508-9530.	3.2	22
15	Supramolecular Hydrogels Based on Nanoclay and Guanidine-Rich Chitosan: Injectable and Moldable Osteoinductive Carriers. ACS Applied Materials & Interfaces, 2020, 12, 16088-16096.	4.0	43
16	Heparinized chitosan stabilizes the bioactivity of BMP-2 and potentiates the osteogenic efficacy of demineralized bone matrix. Journal of Biological Engineering, 2020, 14, 6.	2.0	19
17	Dual Functional Lysozyme–Chitosan Conjugate for Tunable Degradation and Antibacterial Activity. ACS Applied Bio Materials, 2020, 3, 2334-2343	2.3	29
18	Photo-induced reactions for disassembling of coloaded photosensitizer and drug molecules from upconversion-mesoporous silica nanoparticles: An effective synergistic cancer therapy. Materials Science and Engineering C, 2020, 110, 110545.	3.8	26

#	Article	IF	CITATIONS
19	Photopolymerizable Hydrogel-Encapsulated Fibromodulin-Reprogrammed Cells for Muscle Regeneration. Tissue Engineering - Part A, 2020, 26, 1112-1122.	1.6	8
20	Smoothened agonist sterosome immobilized hybrid scaffold for bone regeneration. Science Advances, 2020, 6, eaaz7822.	4.7	35
21	Apatiteâ€Binding Nanoparticulate Agonist of Hedgehog Signaling for Bone Repair. Advanced Functional Materials, 2020, 30, 1909218.	7.8	19
22	Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nature Communications, 2019, 10, 3523.	5.8	273
23	Relative contributions of adipose-resident CD146+ pericytes and CD34+ adventitial progenitor cells in bone tissue engineering. Npj Regenerative Medicine, 2019, 4, 1.	2.5	62
24	Skeletogenic Capacity of Human Perivascular Stem Cells Obtained Via Magnetic-Activated Cell Sorting. Tissue Engineering - Part A, 2019, 25, 1658-1666.	1.6	6
25	Hypoxic Physiological Environments in a Gas-Regulated Microfluidic Device. Micromachines, 2019, 10, 16.	1.4	5
26	Design of hydrogels to stabilize and enhance bone morphogenetic protein activity by heparin mimetics. Acta Biomaterialia, 2018, 72, 45-54.	4.1	43
27	Chitosan–Lysozyme Conjugates for Enzyme-Triggered Hydrogel Degradation in Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2018, 10, 41138-41145.	4.0	82
28	Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 164-174.	1.3	103
29	Simultaneous delivery of hydrophobic small molecules and siRNA using Sterosomes to direct mesenchymal stem cell differentiation for bone repair. Acta Biomaterialia, 2017, 58, 214-224.	4.1	48
30	Combining Smoothened Agonist and NEL-Like Protein-1 Enhances Bone Healing. Plastic and Reconstructive Surgery, 2017, 139, 1385-1396.	0.7	22
31	Small molecule-mediated tribbles homolog 3 promotes bone formation induced by bone morphogenetic protein-2. Scientific Reports, 2017, 7, 7518.	1.6	16
32	Design and Characterization of a Therapeutic Non-phospholipid Liposomal Nanocarrier with Osteoinductive Characteristics To Promote Bone Formation. ACS Nano, 2017, 11, 8055-8063.	7.3	42
33	Reducing posttreatment relapse in cleft lip palatal expansion using an injectable estrogen–nanodiamond hydrogel. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7218-E7225.	3.3	20
34	Enhanced Mandibular Bone Repair by Combined Treatment of Bone Morphogenetic Protein 2 and Small-Molecule Phenamil. Tissue Engineering - Part A, 2017, 23, 195-207.	1.6	23
35	NELL-1 induces Sca-1+ mesenchymal progenitor cell expansion in models of bone maintenance and repair. JCI Insight, 2017, 2, .	2.3	18
36	Calvarial Defect Healing Induced by Small Molecule Smoothened Agonist. Tissue Engineering - Part A, 2016, 22, 1357-1366.	1.6	23

#	Article	IF	CITATIONS
37	Photocrosslinkable chitosan hydrogels functionalized with the RGD peptide and phosphoserine to enhance osteogenesis. Journal of Materials Chemistry B, 2016, 4, 5289-5298.	2.9	69
38	Novel Wnt Regulator NEL-Like Molecule-1 Antagonizes Adipogenesis and Augments Osteogenesis Induced by Bone Morphogenetic Protein 2. American Journal of Pathology, 2016, 186, 419-434.	1.9	59
39	Enhanced Osteogenesis of Adipose-Derived Stem Cells by Regulating Bone Morphogenetic Protein Signaling Antagonists and Agonists. Stem Cells Translational Medicine, 2016, 5, 539-551.	1.6	39
40	Delivery of Phenamil Enhances BMP-2-Induced Osteogenic Differentiation of Adipose-Derived Stem Cells and Bone Formation in Calvarial Defects. Tissue Engineering - Part A, 2015, 21, 2053-2065.	1.6	49
41	Novel Role for Cyclophilin A in Regulation of Chondrogenic Commitment and Endochondral Ossification. Molecular and Cellular Biology, 2015, 35, 2119-2130.	1.1	14
42	Glutamine-chitosan modified calcium phosphate nanoparticles for efficient siRNA delivery and osteogenic differentiation. Journal of Materials Chemistry B, 2015, 3, 6448-6455.	2.9	49
43	TGF-Î ² 1 conjugated chitosan collagen hydrogels induce chondrogenic differentiation of human synovium-derived stem cells. Journal of Biological Engineering, 2015, 9, 1.	2.0	129
44	Covalently conjugated transforming growth factor-Î ² 1 in modular chitosan hydrogels for the effective treatment of articular cartilage defects. Biomaterials Science, 2015, 3, 742-752.	2.6	62
45	Delivery of siRNA via cationic Sterosomes to enhance osteogenic differentiation of mesenchymal stem cells. Journal of Controlled Release, 2015, 217, 42-52.	4.8	63
46	Visible-light-initiated hydrogels preserving cartilage extracellular signaling for inducing chondrogenesis of mesenchymal stem cells. Acta Biomaterialia, 2015, 12, 30-41.	4.1	46
47	Biomimetic scaffolds facilitate healing of critical-sized segmental mandibular defects. American Journal of Otolaryngology - Head and Neck Medicine and Surgery, 2015, 36, 1-6.	0.6	23
48	Smooth Muscle Strips for Intestinal Tissue Engineering. PLoS ONE, 2014, 9, e114850.	1.1	19
49	Defining the Critical-Sized Defect in a Rat Segmental Mandibulectomy Model. JAMA Otolaryngology - Head and Neck Surgery, 2014, 140, 58.	1.2	12
50	Cartilaginous Extracellular Matrix-Modified Chitosan Hydrogels for Cartilage Tissue Engineering. ACS Applied Materials & Interfaces, 2014, 6, 20110-20121.	4.0	170
51	Targeting of ALK2, a Receptor for Bone Morphogenetic Proteins, Using the Cre/lox System to Enhance Osseous Regeneration by Adipose-Derived Stem Cells. Stem Cells Translational Medicine, 2014, 3, 1375-1380.	1.6	9
52	Osteo-/Odontogenic Differentiation of Induced Mesenchymal Stem Cells Generated through Epithelial–Mesenchyme Transition of Cultured Human Keratinocytes. Journal of Endodontics, 2014, 40, 1796-1801.	1.4	8
53	Adipose-Derived Stem Cells and BMP-2 Delivery in Chitosan-Based 3D Constructs to Enhance Bone Regeneration in a Rat Mandibular Defect Model. Tissue Engineering - Part A, 2014, 20, 2169-2179.	1.6	58
54	Anionic carbohydrate-containing chitosan scaffolds for bone regeneration. Carbohydrate Polymers, 2013, 97, 587-596.	5.1	52

#	Article	IF	CITATIONS
55	NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9469-9474.	3.3	263
56	Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomaterialia, 2013, 9, 4779-4786.	4.1	280
57	Bone morphogenetic proteinâ€2–impregnated biomimetic scaffolds successfully induce bone healing in a marginal mandibular defect. Laryngoscope, 2013, 123, 1149-1155.	1.1	18
58	Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering. Biofabrication, 2013, 5, 045003.	3.7	125
59	Enhanced Osteogenesis of Adipose Derived Stem Cells with Noggin Suppression and Delivery of BMP-2. PLoS ONE, 2013, 8, e72474.	1.1	55
60	Recent Advances in 3D Printing of Tissue Engineering Scaffolds. Methods in Molecular Biology, 2012, 868, 257-267.	0.4	66
61	NELL-1 Promotes Cartilage Regeneration in an <i>In Vivo</i> Rabbit Model. Tissue Engineering - Part A, 2012, 18, 252-261.	1.6	43
62	Betaâ€ŧricalcium phosphate particles as a controlled release carrier of osteogenic proteins for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1680-1686.	2.1	16
63	Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomaterialia, 2012, 8, 1730-1738.	4.1	179
64	Chitosanâ€based nanoparticles as a sustained protein release carrier for tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2012, 100A, 939-947.	2.1	68
65	High Doses of Bone Morphogenetic Protein 2 Induce Structurally Abnormal Bone and Inflammation <i>In Vivo</i> . Tissue Engineering - Part A, 2011, 17, 1389-1399.	1.6	470
66	Nell-1 Enhances Bone Regeneration in a Rat Critical-Sized Femoral Segmental Defect Model. Plastic and Reconstructive Surgery, 2011, 127, 580-587.	0.7	51
67	Dura Mater Stimulates Human Adipose-Derived Stromal Cells to Undergo Bone Formation in Mouse Calvarial Defects. Stem Cells, 2011, 29, 1241-1255.	1.4	92
68	The use of BMP-2 coupled – Nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. Biomaterials, 2010, 31, 9293-9300.	5.7	121
69	Delivery of Lyophilized Nell-1 in a Rat Spinal Fusion Model. Tissue Engineering - Part A, 2010, 16, 2861-2870.	1.6	54
70	Effect of Nell-1 Delivery on Chondrocyte Proliferation and Cartilaginous Extracellular Matrix Deposition. Tissue Engineering - Part A, 2010, 16, 1791-1800.	1.6	41
71	Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Biomaterials, 2009, 30, 6094-6101.	5.7	115
72	Effect of scaffold architecture and pore size on smooth muscle cell growth. Journal of Biomedical Materials Research - Part A, 2008, 87A, 1010-1016.	2.1	115

#	Article	IF	CITATIONS
73	Evaluation of Small Intestinal Submucosa as Scaffolds for Intestinal Tissue Engineering. Journal of Surgical Research, 2008, 147, 168-171.	0.8	35
74	Intestinal Smooth Muscle Cell Maintenance by Basic Fibroblast Growth Factor. Tissue Engineering - Part A, 2008, 14, 1395-1402.	1.6	45
75	Modulation of protein delivery from modular polymer scaffolds. Biomaterials, 2007, 28, 1862-1870.	5.7	70
76	Magnetically actuable polymer nanocomposites for bioengineering applications. Journal of Materials Science, 2007, 42, 6139-6147.	1.7	10
77	Scaffold fabrication by indirect three-dimensional printing. Biomaterials, 2005, 26, 4281-4289.	5.7	243