Mohd Asri Mat Teridi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8527924/publications.pdf

Version: 2024-02-01

69 papers

3,139 citations

172457 29 h-index 55 g-index

69 all docs 69 docs citations

69 times ranked

4553 citing authors

#	Article	IF	CITATIONS
1	Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst. Applied Catalysis B: Environmental, 2018, 234, 296-310.	20.2	301
2	Defect chemistry and defect engineering of TiO ₂ -based semiconductors for solar energy conversion. Chemical Society Reviews, 2015, 44, 8424-8442.	38.1	276
3	Graphitic carbon nitride (g-C ₃ N ₄) electrodes for energy conversion and storage: a review on photoelectrochemical water splitting, solar cells and supercapacitors. Journal of Materials Chemistry A, 2018, 6, 22346-22380.	10.3	244
4	Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review. Renewable and Sustainable Energy Reviews, 2018, 96, 11-28.	16.4	236
5	The architecture of the electron transport layer for a perovskite solar cell. Journal of Materials Chemistry C, 2018, 6, 682-712.	5. 5	172
6	A review of organic small molecule-based hole-transporting materials for meso-structured organic–inorganic perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 15788-15822.	10.3	150
7	New Insights into Se/BiVO ₄ Heterostructure for Photoelectrochemical Water Splitting: A Combined Experimental and DFT Study. Journal of Physical Chemistry C, 2017, 121, 6218-6228.	3.1	96
8	Efficient Photoelectrochemical Performance of \hat{l}^3 Irradiated g-C ₃ N ₄ and Its g-C ₃ N ₄ @BiVO ₄ Heterojunction for Solar Water Splitting. Journal of Physical Chemistry C, 2019, 123, 9013-9026.	3.1	93
9	A review of recent plasmonic nanoparticles incorporated P3HT: PCBM organic thin film solar cells. Organic Electronics, 2016, 36, 12-28.	2.6	84
10	Eliminating oxygen vacancies in SnO2 films via aerosol-assisted chemical vapour deposition for perovskite solar cells and photoelectrochemical cells. Journal of Alloys and Compounds, 2019, 773, 997-1008.	5 . 5	79
11	Efficient colloidal quantum dot light-emitting diodes operating in the second near-infrared biological window. Nature Photonics, 2020, 14, 50-56.	31.4	72
12	A MiniÂReview: Can Graphene Be a Novel Material for Perovskite Solar Cell Applications?. Nano-Micro Letters, 2018, 10, 27.	27.0	65
13	Facile fabrication of graphitic carbon nitride, (g-C3N4) thin film. Journal of Alloys and Compounds, 2018, 769, 130-135.	5.5	60
14	Boosting photocatalytic activities of BiVO4 by creation of g-C3N4/ZnO@BiVO4 Heterojunction. Materials Research Bulletin, 2020, 125, 110779.	5.2	59
15	The Application of Graphene and Its Derivatives to Energy Conversion, Storage, and Environmental and Biosensing Devices. Chemical Record, 2016, 16, 1591-1634.	5 . 8	58
16	Quantum dots processed by SILAR for solar cell applications. Solar Energy, 2018, 163, 256-270.	6.1	56
17	High-humidity processed perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 10481-10518.	10.3	56
18	The influences of post-annealing temperatures on fabrication graphitic carbon nitride, (g-C3N4) thin film. Applied Surface Science, 2019, 489, 92-100.	6.1	55

#	Article	IF	Citations
19	Aerosol-assisted chemical vapour deposition of \hat{l}_{\pm} -Fe2O3 nanoflowers for photoelectrochemical water splitting. Ceramics International, 2019, 45, 16797-16802.	4.8	53
20	Fabrication of exfoliated graphitic carbon nitride, (g-C3N4) thin film by methanolic dispersion. Journal of Alloys and Compounds, 2020, 818, 152916.	5 . 5	49
21	Effect of temperature on the properties of SnO 2 layer fabricated via AACVD and its application in photoelectrochemical cells and organic photovoltaic devices. Solar Energy, 2017, 158, 474-482.	6.1	45
22	Direct extrapolation techniques on the energy band diagram of BiVO4 thin films. Physica B: Condensed Matter, 2021, 604, 412719.	2.7	42
23	A hysteresis-free perovskite transistor with exceptional stability through molecular cross-linking and amine-based surface passivation. Nanoscale, 2020, 12, 7641-7650.	5. 6	40
24	Rapid fabrication of oxygen defective α-Fe ₂ O ₃ (110) for enhanced photoelectrochemical activities. Dalton Transactions, 2020, 49, 12037-12048.	3.3	36
25	Perylene derivatives for solar cells and energy harvesting: a review of materials, challenges and advances. Journal of Materials Science: Materials in Electronics, 2019, 30, 15803-15824.	2.2	35
26	Prospects and challenges of perovskite type transparent conductive oxides in photovoltaic applications. Part I $\hat{a} \in M$ Material developments. Solar Energy, 2016, 137, 371-378.	6.1	34
27	Stable and null current hysteresis perovskite solar cells based nitrogen doped graphene oxide nanoribbons hole transport layer. Scientific Reports, 2016, 6, 27773.	3.3	34
28	Progress towards highly stable and lead-free perovskite solar cells. Materials for Renewable and Sustainable Energy, $2018, 7, 1$.	3.6	31
29	Simultaneous enhancement in light absorption and charge transportation of bismuth vanadate (BiVO4) photoanode via microwave annealing. Materials Letters, 2018, 233, 67-70.	2.6	31
30	Incorporation of g-C3N4/Ag dopant in TiO2 as electron transport layer for organic solar cells. Materials Letters, 2019, 253, 117-120.	2.6	29
31	An Overview of the Recent Progress in Polymeric Carbon Nitride Based Photocatalysis. Chemical Record, 2021, 21, 1811-1844.	5.8	29
32	Null current hysteresis for acetylacetonate electron extraction layer in perovskite solar cells. Nanoscale, 2016, 8, 6328-6334.	5.6	28
33	Nanostructure-assisted charge transfer in α-Fe ₂ O ₃ /g-C ₃ N ₄ heterojunctions for efficient and highly stable photoelectrochemical water splitting. Dalton Transactions, 2020, 49, 11317-11328.	3.3	27
34	Heterojunction Cr2O3/CuO:Ni photocathodes for enhanced photoelectrochemical performance. RSC Advances, 2016, 6, 56885-56891.	3.6	25
35	A novel photoanode based on Thorium oxide (ThO2) incorporated with graphitic Carbon nitride (g-C3N4) for Photoelectrochemical water splitting. Applied Surface Science, 2021, 569, 151043.	6.1	25
36	Preparation of nanostructured p-NiO/n-Fe 2 O 3 heterojunction and study of their enhanced photoelectrochemical water splitting performance. Materials Letters, 2014, 133, 123-126.	2.6	23

#	Article	IF	Citations
37	Reduced Graphene Oxide/Copper Nanoparticle Composites as Electrochemical Sensor Materials for Nitrate Detection. ACS Applied Nano Materials, 2021, 4, 12737-12744.	5.0	21
38	Photoelectrochemical water splitting performance of flower like ZnO nanostructures synthesized by a novel chemical method. Journal of Materials Science: Materials in Electronics, 2016, 27, 2846-2851.	2.2	20
39	Electrodeposition of BiVO4 with needle-like flower architecture for high performance photoelectrochemical splitting of water. Ceramics International, 2021, 47, 24227-24239.	4.8	19
40	Plasmon enhanced organic devices utilizing highly ordered nanoimprinted gold nanodisks and nitrogen doped graphene. Nanoscale, 2015, 7, 7091-7100.	5.6	18
41	Effect of synergic cooperation on optical and photoelectrochemical properties of CeO2–MnO composite thin films. New Journal of Chemistry, 2016, 40, 5177-5184.	2.8	18
42	Photoelectrochemical enhancement from deposition of BiVO4 photosensitizer on different thickness layer TiO2 photoanode for water splitting application. Nano Structures Nano Objects, 2019, 18, 100274.	3.5	15
43	Boron-doped graphene-supported manganese oxide nanotubes as an efficient non-metal catalyst for the oxygen reduction reaction. Sustainable Energy and Fuels, 2020, 4, 737-749.	4.9	15
44	Perovskite Flash Memory with a Single-Layer Nanofloating Gate. Nano Letters, 2020, 20, 5081-5089.	9.1	15
45	Bandgap tuning of mixed organic cation utilizing chemical vapor deposition process. Scientific Reports, 2016, 6, 37378.	3.3	14
46	Cyclic voltammetry - A promising approach towards improving photoelectrochemical activity of hematite. Journal of Alloys and Compounds, 2021, 852, 156757.	5.5	14
47	Effect of radiation on conductivity of solid PVA–KOH–PC composite polymer electrolytes. Ionics, 2006, 12, 53-56.	2.4	13
48	Photoelectrochemical water splitting over mesoporous CuPbI3 films prepared by electrophoretic technique. Monatshefte FÃ 1 /4r Chemie, 2017, 148, 981-989.	1.8	13
49	Model development of monolithic tandem silicon-perovskite solar cell by SCAPS simulation. AIP Conference Proceedings, 2017, , .	0.4	13
50	Improving the stability and efficiency of polymer solar cells by γâ€radiated graphitic carbon nitride. International Journal of Energy Research, 2021, 45, 15284-15297.	4.5	12
51	Recent Issues and Configuration Factors in Perovskite-Silicon Tandem Solar Cells towards Large Scaling Production. Nanomaterials, 2021, 11, 3186.	4.1	10
52	Superiority of two-step deposition over one-step deposition for perovskite solar cells processed in high humidity atmosphere. Optical Materials, 2021, 118, 111288.	3.6	9
53	Synthesis and characterization of $2,2\hat{a}\in^2$ -bithiophene end-capped dihexyloxy phenylene pentamer and its application in a solution-processed organic ultraviolet photodetector. RSC Advances, 2016, 6, 61848-61859.	3.6	8

Energy levels of natural sensitizers extracted from rengas (Gluta spp.) and mengkulang (Heritiera) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

#	Article	IF	Citations
55	Low Temperature Fabrication of Transparent Conductive Electrode With High Ultraviolet Transmittance Down to Wavelength of 250 nm. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800441.	2.4	7
56	Optoelectronic and morphology properties of perovskite/silicon interface layer for tandem solar cell application. Surface and Interface Analysis, 2020, 52, 422-432.	1.8	6
57	Effects of gamma radiation treatment and plasticizer on alkaline solid polymer electrolytes. Ionics, 2005, 11, 468-471.	2.4	5
58	Motion-dispensing as an effective strategy for preparing efficient high-humidity processed perovskite solar cells. Journal of Alloys and Compounds, 2021, 854, 157320.	5.5	5
59	Facile tuning of PbI2 porosity via additive engineering for humid air processable perovskite solar cells. Electrochimica Acta, 2022, 402, 139530.	5.2	5
60	Accelerating the controlled synthesis of WO3 photoanode by modifying aerosol-assisted chemical vapour deposition for photoelectrochemical water splitting. Chemical Engineering Science, 2022, 252, 117294.	3.8	5
61	Prospects and challenges of perovskite type transparent conductive oxides in photovoltaic applications. Part II $\hat{a} \in \mathcal{C}$ Synthesis and deposition. Solar Energy, 2016, 139, 309-317.	6.1	4
62	Outstanding Photocurrent Density and Incident Photonâ€toâ€Current Conversion Efficiency of Liquidâ€State NiO Perovskiteâ€Sensitized Solar Cells. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900607.	1.8	4
63	Zinc oxide nanorod doped graphene for high efficiency organic photovoltaic devices. RSC Advances, 2016, 6, 87319-87324.	3.6	3
64	Effect of Oxygen Vacancies in Electron Transport Layer for Perovskite Solar Cells. , 2020, , 283-305.		3
65	The \hat{I}^3 -radiated g-C3N4 additive for highly conductive electron transport layer in polymer solar cells. Materials Letters, 2022, 308, 131297.	2.6	3
66	Performance-Enhancing Sulfur-Doped TiO2 Photoanodes for Perovskite Solar Cells. Applied Sciences (Switzerland), 2022, 12, 429.	2.5	3
67	Characterization of perovskite layer on various nanostructured silicon wafer. AIP Conference Proceedings, 2017, , .	0.4	2
68	WTa ₃₇ O _{95.487} Nanocatalyst for Pollutant Degradation. Journal of Physical Chemistry C, 2021, 125, 27148-27158.	3.1	2
69	Properties of zinc tin oxide thin film by aerosol assisted chemical vapor deposition (AACVD). AIP Conference Proceedings, 2018, , .	0.4	0