Daniel Roxbury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8527682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hyperspectral Counting of Multiplexed Nanoparticle Emitters in Single Cells and Organelles. ACS Nano, 2022, 16, 3092-3104.	14.6	8
2	Aggregation Reduces Subcellular Localization and Cytotoxicity of Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2022, 14, 19168-19177.	8.0	9
3	A Wearable Optical Microfibrous Biomaterial with Encapsulated Nanosensors Enables Wireless Monitoring of Oxidative Stress. Advanced Functional Materials, 2021, 31, 2006254.	14.9	58
4	Multispectral Fingerprinting Resolves Dynamics of Nanomaterial Trafficking in Primary Endothelial Cells. ACS Nano, 2021, 15, 12388-12404.	14.6	23
5	A Spin-Coated Hydrogel Platform Enables Accurate Investigation of Immobilized Individual Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2021, 13, 31986-31995.	8.0	13
6	Single-Chirality Near-Infrared Carbon Nanotube Sub-Cellular Imaging and FRET Probes. Nano Letters, 2021, 21, 6441-6448.	9.1	23
7	Carbon Nanotube–Liposome Complexes in Hydrogels for Controlled Drug Delivery via Near-Infrared Laser Stimulation. ACS Applied Nano Materials, 2021, 4, 331-342.	5.0	19
8	Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nature Nanotechnology, 2020, 15, 164-166.	31.5	69
9	A Magnetically Responsive Hydrogel System for Controlling the Timing of Bone Progenitor Recruitment and Differentiation Factor Deliveries. ACS Biomaterials Science and Engineering, 2020, 6, 1522-1534.	5.2	15
10	Enhancing the Thermal Stability of Carbon Nanomaterials with DNA. Scientific Reports, 2019, 9, 11926.	3.3	16
11	Biomolecular Functionalization of a Nanomaterial To Control Stability and Retention within Live Cells. Nano Letters, 2019, 19, 6203-6212.	9.1	48
12	Optical Voltammetry of Polymer-Encapsulated Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 24200-24208.	3.1	7
13	DNA Sequence Mediates Apparent Length Distribution in Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2019, 11, 2225-2233.	8.0	23
14	Quantitative self-assembly prediction yields targeted nanomedicines. Nature Materials, 2018, 17, 361-368.	27.5	141
15	An optical nanoreporter of endolysosomal lipid accumulation reveals enduring effects of diet on hepatic macrophages in vivo. Science Translational Medicine, 2018, 10, .	12.4	80
16	Single Nanotube Spectral Imaging To Determine Molar Concentrations of Isolated Carbon Nanotube Species. Analytical Chemistry, 2017, 89, 1073-1077.	6.5	20
17	Review—Progress toward Applications of Carbon Nanotube Photoluminescence. ECS Journal of Solid State Science and Technology, 2017, 6, M3075-M3077.	1.8	27
18	A Carbon Nanotube Optical Sensor Reports Nuclear Entry <i>via</i> a Noncanonical Pathway. ACS Nano. 2017. 11. 3875-3882.	14.6	52

DANIEL ROXBURY

#	Article	IF	CITATIONS
19	A carbon nanotube reporter of microRNA hybridization events in vivo. Nature Biomedical Engineering, 2017, 1, .	22.5	160
20	A Carbon Nanotube Optical Reporter Maps Endolysosomal Lipid Flux. ACS Nano, 2017, 11, 10689-10703.	14.6	84
21	DNA–Carbon Nanotube Complexation Affinity and Photoluminescence Modulation Are Independent. ACS Applied Materials & Interfaces, 2017, 9, 21397-21405.	8.0	62
22	Cell Membrane Proteins Modulate the Carbon Nanotube Optical Bandgap <i>via</i> Surface Charge Accumulation. ACS Nano, 2016, 10, 499-506.	14.6	71
23	Photoluminescent carbon nanotubes interrogate the permeability of multicellular tumor spheroids. Carbon, 2016, 97, 99-109.	10.3	41
24	Hyperspectral Microscopy of Near-Infrared Fluorescence Enables 17-Chirality Carbon Nanotube Imaging. Scientific Reports, 2015, 5, 14167.	3.3	114
25	Helical Polycarbodiimide Cloaking of Carbon Nanotubes Enables Inter-Nanotube Exciton Energy Transfer Modulation. Journal of the American Chemical Society, 2014, 136, 15545-15550.	13.7	48
26	Structural Stability and Binding Strength of a Designed Peptide–Carbon Nanotube Hybrid. Journal of Physical Chemistry C, 2013, 117, 26255-26261.	3.1	13
27	Structural Characteristics of Oligomeric DNA Strands Adsorbed onto Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2013, 117, 132-140.	2.6	47
28	Molecular-Basis of Single-Walled Carbon Nanotube Recognition by Single-Stranded DNA. Nano Letters, 2012, 12, 1464-1469.	9.1	115
29	DNA Conjugated SWCNTs Enter Endothelial Cells via Rac1 Mediated Macropinocytosis. Nano Letters, 2012, 12, 1826-1830.	9.1	49
30	Sequence-Specific Self-Stitching Motif of Short Single-Stranded DNA on a Single-Walled Carbon Nanotube. Journal of the American Chemical Society, 2011, 133, 13545-13550.	13.7	76
31	Recognition Ability of DNA for Carbon Nanotubes Correlates with Their Binding Affinity. Langmuir, 2011, 27, 8282-8293.	3.5	90
32	Molecular Simulation of DNA β-Sheet and β-Barrel Structures on Graphite and Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 13267-13276.	3.1	28