Martin McMahon

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/8527552/publications.pdf
Version: 2024-02-01

The role of PI3'â€lipid signalling in melanoma initiation, progression and maintenance. Experimenta
Dermatology, 2022, 31, 43-56.

Modelâ€dependent outcomes: Sex as a biological variable in preclinical mouse models of melanoma. Pigment Cell and Melanoma Research, 2021, 34, 655-658.

3 Melanoma models for the next generation of therapies. Cancer Cell, 2021, 39, 610-631.
16.8

Autophagy Inhibition in BRAF-Driven Cancers. Cancers, 2021, 13, 3498.
3.7

Inhibition of MEK1/2 Forestalls the Onset of Acquired Resistance to Entrectinib in Multiple Models of
$5 \quad \begin{aligned} & \text { Inhibition of MEK1/2 Forestalls the Onset of Acquired } \\ & \text { NTRK1-Driven Cancer. Cell Reports, 2020, 32, } 107994 .\end{aligned}$
$6.4 \quad 15$

6 Chloroquine Sensitizes <i>GNAQ/11</i>-mutated Melanoma to MEK1/2 Inhibition. Clinical Cancer Research, 2020, 26, 6374-6386.
7.0

35

Pigment Cell and Melanoma Research, 2020, 33, 719-730.

8 Animal Models of Melanoma. , 2019, , 303-333.

AKT1E17K Activates Focal Adhesion Kinase and Promotes Melanoma Brain Metastasis. Molecular Cancer
Research, 2019, 17, 1787-1800.

10 Protective autophagy elicited by RAFâ†'MEKât'ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nature Medicine, 2019, 25, 620-627.
30.7

457

> 11 Mutationally-activated PI3ấ $\epsilon^{T M}$-kinase-Ît promotes de-differentiation of lung tumors initiated by the
> BRAFV600E oncoprotein kinase. ELife, 2019, 8, .

12 Animal Models of Melanoma. , 2018, , 1-31.
3

13 Linking brain tumors and epileptic seizures. Nature Medicine, 2018, 24, 1638-1639.
30.7

3
<i>PIK3CA</i>â $€$ mutated melanoma cells rely on cooperative signaling through mTORC1/2 for sustained proliferation. Pigment Cell and Melanoma Research, 2017, 30, 353-367.
3.3

9

BRAFV600E cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis. ELife,
6.0

73 2017, 6, .

Concurrent MEK targeted therapy prevents MAPK pathway reactivation during BRAFV600E targeted inhibition in a novel syngeneic murine glioma model. Oncotarget, 2016, 7, 75839-75853.
1.8

27

Rational targeting of BRAF and PI3-Kinase signaling for melanoma therapy. Molecular and Cellular
Oncology, 2016, 3, e1033095.
$0.7 \quad 6$

The state of melanoma: challenges and opportunities. Pigment Cell and Melanoma Research, 2016, 29,
404-416.
19 P2A-Fluorophore Tagging of BRAF Tightly Links Expression to Fluorescence In Vivo. PLoS ONE, 2016, 11,
e0157661.

TP53 Silencing Bypasses Growth Arrest of BRAFV600E-Induced Lung Tumor Cells in a Two-Switch Model

The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nature
mTORC1 Activation Blocks BrafV600E-Induced Growth Arrest but Is Insufficient for Melanoma
Formation. Cancer Cell, 2015, 27, 41-56.

24 Transposon mutagenesis identifies genetic drivers of BrafV600E melanoma. Nature Genetics, 2015, 47,
486-495.

25	PIK3CAH1047R Accelerates and Enhances KRASG12D-Driven Lung Tumorigenesis. Cancer Research, 75, 5378-5391.	0.9
26	PI3â $€^{2-K i n a s e ~ I n h i b i t i o n ~ F o r e s t a l l s ~ t h e ~ O n s e t ~ o f ~ M E K 1 / 2 ~ I n h i b i t o r ~ R e s i s t a n c e ~ i n ~<i>B R A F</ i>-M u t a t e d ~}$ Melanoma. Cancer Discovery, 2015, 5, 143-153.	9.4
27	Activating BRAF and PIK3CA Mutations Cooperate to Promote Anaplastic Thyroid Carcinogenesis. Molecular Cancer Research, 2014, 12, 979-986.	3.4
28	Response to BRAF Inhibition in Melanoma Is Enhanced When Combined with Immune Checkpoint Blockade. Cancer Immunology Research, 2014, 2, 643-654.	3.4
29	BRAFV600E Cooperates with PI3K Signaling, Independent of AKT, to Regulate Melanoma Cell Proliferation. Molecular Cancer Research, 2014, 12, 447-463.	3.4
30	Diminished WNT â†' ${ }^{2}$-catenin ât' c-MYC signaling is a barrier for malignant progression of BRAF^{V600E}-induced lung tumors. Genes and Development, 2014, 28, 561-575.	5.9

31 Enzyme meets a surprise target. Nature, 2014, 510, 225-226.

Isolation and Molecular Characterization of Circulating Melanoma Cells. Cell Reports, 2014, 7,

[^0]7.1

131
Mutationally Activated PIK3CAH1047R Cooperates with BRAFV600E to Promote Lung Cancer
Progression. Cancer Research, 2013, 73, 6448-6461.

Oncogeneâ€dependent control of <scp>miRNA</scp> biogenesis and metastatic progression in a model of undifferentiated pleomorphic sarcoma. Journal of Pathology, 2013, 229, 132-140.
4.5

34

Autophagy Sustains Mitochondrial Glutamine Metabolism and Growth of <i>Braf</i>V600Eâ€"Driven
Lung Tumors. Cancer Discovery, 2013, 3, 1272-1285.
9.4

Hematopoietic Expression of Oncogenic <i> BRAF</i> Promotes Aberrant Growth of Monocyte-Lineage
$40 \quad$ Cells Resistant to PLX4720. Molecular Cancer Research, 2013, 11, 1530-1541.
3.4

7

41 Elucidating Distinct Roles for $\langle\mathrm{i}\rangle \mathrm{NF} 1\langle/ \mathrm{i}\rangle$ in Melanomagenesis. Cancer Discovery, 2013, 3, 338-349.
9.4

213

Phenformin enhances the therapeutic benefit of BRAF ^{V600E} inhibition in melanoma.
Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18226-18231.
7.1

197

43 Differential AKT dependency displayed by mouse models of BRAFV600E-initiated melanoma. Journal of
Clinical Investigation, 2013, 123, 5104-5118.

B-Raf Activation Cooperates with PTEN Loss to Drive c-Myc Expression in Advanced Prostate Cancer.
Cancer Research, 2012, 72, 4765-4776.

Analysis of mRNA Profiles after MEK1/2 Inhibition in Human Pancreatic Cancer Cell Lines Reveals
Pathways Involved in Drug Sensitivity. Molecular Cancer Research, 2012, 10, 1607-1619.

Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in
mammalian spinal cord. Development (Cambridge), 2012, 139, 2477-2487.

MEK1/2 Inhibition Elicits Regression of Autochthonous Lung Tumors Induced by KRASG12D or
MEK1/2 Inhibition Elicits Regression of Autochthonous
BRAFV600E. Cancer Research, 2012, 72, 3048-3059.
$0.9 \quad 48$

Abrogation of BRAF ^{V 600 E}-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes and Development, 2012, 26, 1055-1069.

The intermediate-activity ^{L597V}BRAF mutant acts as an epistatic modifier of oncogenic RAS
by enhancing signaling through the RAF/MEK/ERK pathway. Genes and Development, 2012, 26, 1945-1958.

An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature, 2012, 491, 449-453.
27.8

406

A Central Role for RAFât'MEKât'ERK Signaling in the Genesis of Pancreatic Ductal Adenocarcinoma. Cancer
Discovery, 2012, 2, 685-693.
9.4

264

Cooperative interactions of BRAF ^{V600E} kinase and <i>CDKN2A</i> locus deficiency in
pediatric malignant astrocytoma as a basis for rational therapy. Proceedings of the National Academy
7.1

77
of Sciences of the United States of America, 2012, 109, 8710-8715.

E-cadherin regulates the behavior and fate of epithelial stem cells and their progeny in the mouse
incisor. Developmental Biology, 2012, 366, 357-366.
2.0

52
56 Control of Mitotic Spindle Angle by the RAS-Regulated ERK1/2 Pathway Determines Lung Tube Shape.
̂̂2-Catenin Signaling Controls Metastasis in Braf-Activated Pten-Deficient Melanomas. Cancer Cell, 2011,
20, 741-754.
16.8

317

60 Costello and cardioâ€facioâ€eutaneous syndromes: Moving toward clinical trials in RASopathies.
American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2011, 157, 136-146.
1.6

41

61 RAF translocations expand cancer targets. Nature Medicine, 2010, 16, 749-750.
Down-regulation of Cdx2 in colorectal carcinoma cells by the Rafâ€"MEKâ€"ERK 1/2 pathway. Cellular
Signalling, 2009, 21, 1846-1856.

BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nature Genetics, 2009, 41, 544-552.
$21.41,022$
Oncogenic BRAF ^{$ V600E} inhibits BIM expression to promote melanoma cell survival. Pigment
Cell and Melanoma Research, 2008, 21, 534-544.

A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes and Development, 2007, 21, 379-384.
5.9

427

Diverse Toll-like receptors utilize Tpl2 to activate extracellular signal-regulated kinase (ERK) in
68 hemopoietic cells. Proceedings of the National Academy of Sciences of the United States of America,

73	The epidermal growth factor receptor gene family as a target for therapeutic intervention in numerous cancers: whatâ $€^{T M}$ s genetics got to do with it?. Expert Opinion on Therapeutic Targets, 2005, 9, 1009-1030.	3.4	47
74	Cooperative Regulation of the Cell Division Cycle by the Protein Kinases RAF and AKT. Molecular and Cellular Biology, 2004, 24, 10868-10881.	2.3	109
75	Extracellular Signal-regulated Kinase (ERK)-dependent Gene Expression Contributes to L1 Cell Adhesion Molecule-dependent Motility and Invasion. Journal of Biological Chemistry, 2004, 279, 28880-28888.	3.4	126
76	Effects of a conditionally active v-ErbB and an EGF-R inhibitor on transformation of NIH-3T3 cells and abrogation of cytokine dependency of hematopoietic cells. Oncogene, 2004, 23, 7810-7820.	5.9	19
77	Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 2003, 425, 851-856.	27.8	1,395
78	Effects of the RAF/MEK/ERK and PI3K/AKT signal transduction pathways on the abrogation of cytokine-dependence and prevention of apoptosis in hematopoietic cells. Oncogene, 2003, 22, 2478-2492.	5.9	95
79	Ras-induced serine phosphorylation of the focal adhesion protein paxillin is mediated by the Rafât'MEKâ†'ERK pathway. Experimental Cell Research, 2003, 287, 325-338.	2.6	27

80 Î"Raf-1:ER* Bypasses the Cyclic AMP Block of Extracellular Signal-Regulated Kinase 1 and 2 Activation but Not CDK2 Activation or Cell Cycle Reentry. Molecular and Cellular Biology, 2003, 23, 9303-9317.

81 | De Novo Infection and Serial Transmission of Kaposi's Sarcoma-Associated Herpesvirus in Cult |
| :--- |
| Endothelial Cells. Journal of Virology, 2002, 76, 2440-2448. |

83 Steroid receptor fusion proteins for conditional activation of raf-MEK-ERK signaling pathway.
Methods in Enzymology, 2001, 332, 401-417.

84 Regulation of the p53 pathway by Ras, the plot thickens. Biochimica Et Biophysica Acta: Reviews on
84 Cancer, 2001, 1471, M63-M71.
7.4

17

> A conditional form of Bruton's tyrosine kinase is sufficient to activate multiple downstream
> signaling pathways via PLC Gamma 2 in B cells. BMC Immunology, 2001, 2, 4 .

Induction of $\hat{1} 23$-Integrin Gene Expression by Sustained Activation of the Ras-Regulated
86 Rafâ€"MEKâ€"Extracellular Signal-Regulated Kinase Signaling Pathway. Molecular and Cellular Biology,
2.3

121
2001, 21, 3192-3205.
87 Dual Growth Arrest Pathways in Astrocytes and Astrocytic Tumors in Response to Raf-1 Activation.
Journal of Biological Chemistry, 2001, 276, 18871-18877.
3.4

52

Analysis of the transcriptional program induced by Raf in epithelial cells. Genes and Development, 2001, 15, 981-994.
5.9

222

A conditionally-active form of MEK1 results in autocrine transformation of human and mouse
hematopoietic cells. Oncogene, 2000, 19, 526-536.
leading to increased malignancy in epithelial cells. Genes and Development, 2000, 14, 2610-2622.

92 Opposing Effects of Ras on p53. Cell, 2000, 103, 321-330.
28.9

346

Raf-1 Causes Growth Suppression and Alteration of Neuroendocrine Markers in DMS53 Human
93 Small-Cell Lung Cancer Cells. American Journal of Respiratory Cell and Molecular Biology, 1999, 20,
2.9

48
543-549.

94 Raf-1-induced cell cycle arrest in LNCaP human prostate cancer cells. , 1999, 72, 458-469.

95	The Repertoire of Fos and Jun Proteins Expressed during the $G<s u b>1</ s u b$ > Phase of the Cell Cycle Is Determined by the Duration of Mitogen-Activated Protein Kinase Activation. Molecular and Cellular Biology, 1999, 19, 330-341.	2.3	174
96	Complementation of Defective Colony-Stimulating Factor 1 Receptor Signaling and Mitogenesis by Raf and v-Src. Molecular and Cellular Biology, 1999, 19, 1101-1115.	2.3	53
97	Persistent Activation of Mitogen-Activated Protein Kinases p42 and p44 and ets-2 Phosphorylation in Response to Colony-Stimulating Factor 1/c-fms Signaling. Molecular and Cellular Biology, 1998, 18, 5148-5156.	2.3	98
98	The mitogen-activated protein (MAP) kinase cascade can either stimulate or inhibit DNA synthesis in primary cultures of rat hepatocytes depending upon whether its activation is acute/phasic or chronic. Biochemical Journal, 1998, 330, 1451-1460.	3.7	193
99	Prolonged activation of the mitogen-activated protein kinase pathway promotes DNA synthesis in primary hepatocytes from p21Cip-1/WAF 1-null mice, but not in hepatocytes from p16INK4a-null mice. Biochemical Journal, 1998, 336, 551-560.	3.7	64

100 Identification of Immediateâ€"Early Gene Targets of the Raf-1 Serine/Threonine Protein Kinase Using an Estradiol-Dependent Fusion Protein, l"’Raf-1:ER., 1997, 85, 137-152.

101	Regulation of Mitogen-activated Protein Kinase Phosphatase-1 Expression by Extracellular Signal-related Kinase-dependent and Ca2+-dependent Signal Pathways in Rat-1 Cells. Journal of Biological Chemistry, 1997, 272, 13309-13319.	3.4	113
102	Oncogenic Raf-1 Induces the Expression of Non-histone Chromosomal Architectural Protein HMGI-C via a p44/p42 Mitogen-activated Protein Kinase-dependent Pathway in Salivary Epithelial Cells. Journal of Biological Chemistry, 1997, 272, 25062-25070.	3.4	35
103	Mutations of critical amino acids affect the biological and biochemical properties of oncogenic A-Raf and Raf-1. Oncogene, 1997, 15, 1021-1033.	5.9	77

104 Raf revealed in life-or-death decisions. Nature Genetics, 1997, 16, 214-215.
21.4

45

[^1]3.4

82

[^0]: p53 constrains progression to anaplastic thyroid carcinoma in a <i>Braf</i>-mutant mouse model of
 35 papillary thyroid cancer. Proceedings of the National Academy of Sciences of the United States of
 America, 2014, 111 , E1600-9.

[^1]: Oncogenic Raf-1 Activates p70 S6 Kinase via a Mitogen-activated Protein Kinase-independent Pathway.
 Journal of Biological Chemistry, 1996, 271, 15762-15768.

