Martin McMahon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8527552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of PI3'â€lipid signalling in melanoma initiation, progression and maintenance. Experimental Dermatology, 2022, 31, 43-56.	2.9	7
2	Modelâ€dependent outcomes: Sex as a biological variable in preclinical mouse models of melanoma. Pigment Cell and Melanoma Research, 2021, 34, 655-658.	3.3	0
3	Melanoma models for the next generation of therapies. Cancer Cell, 2021, 39, 610-631.	16.8	90
4	Autophagy Inhibition in BRAF-Driven Cancers. Cancers, 2021, 13, 3498.	3.7	13
5	Inhibition of MEK1/2 Forestalls the Onset of Acquired Resistance to Entrectinib in Multiple Models of NTRK1-Driven Cancer. Cell Reports, 2020, 32, 107994.	6.4	15
6	Chloroquine Sensitizes <i>GNAQ/11</i> -mutated Melanoma to MEK1/2 Inhibition. Clinical Cancer Research, 2020, 26, 6374-6386.	7.0	35
7	<i>RAC1</i> mutation is not a predictive biomarker for PI3'â€kinaseâ€Î²â€selective pathwayâ€ŧargeted thera Pigment Cell and Melanoma Research, 2020, 33, 719-730.	ру _{з.3}	2
8	Animal Models of Melanoma. , 2019, , 303-333.		0
9	AKT1E17K Activates Focal Adhesion Kinase and Promotes Melanoma Brain Metastasis. Molecular Cancer Research, 2019, 17, 1787-1800.	3.4	46
10	Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nature Medicine, 2019, 25, 620-627.	30.7	457
11	Mutationally-activated PI3'-kinase-α promotes de-differentiation of lung tumors initiated by the BRAFV600E oncoprotein kinase. ELife, 2019, 8, .	6.0	18
12	Animal Models of Melanoma. , 2018, , 1-31.		3
13	Linking brain tumors and epileptic seizures. Nature Medicine, 2018, 24, 1638-1639.	30.7	3
14	<i>PIK3CA</i> â€mutated melanoma cells rely on cooperative signaling through mTORC1/2 for sustained proliferation. Pigment Cell and Melanoma Research, 2017, 30, 353-367.	3.3	9
15	BRAFV600E cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis. ELife, 2017, 6, .	6.0	73
16	Concurrent MEK targeted therapy prevents MAPK pathway reactivation during BRAFV600E targeted inhibition in a novel syngeneic murine glioma model. Oncotarget, 2016, 7, 75839-75853.	1.8	27
17	Rational targeting of BRAF and PI3-Kinase signaling for melanoma therapy. Molecular and Cellular Oncology, 2016, 3, e1033095.	0.7	6
18	The state of melanoma: challenges and opportunities. Pigment Cell and Melanoma Research, 2016, 29, 404-416.	3.3	77

MARTIN MCMAHON

#	Article	IF	CITATIONS
19	P2A-Fluorophore Tagging of BRAF Tightly Links Expression to Fluorescence In Vivo. PLoS ONE, 2016, 11, e0157661.	2.5	2
20	TP53 Silencing Bypasses Growth Arrest of BRAFV600E-Induced Lung Tumor Cells in a Two-Switch Model of Lung Tumorigenesis. Cancer Research, 2015, 75, 3167-3180.	0.9	25
21	AKT1 Activation Promotes Development of Melanoma Metastases. Cell Reports, 2015, 13, 898-905.	6.4	124
22	The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nature Genetics, 2015, 47, 250-256.	21.4	434
23	mTORC1 Activation Blocks BrafV600E-Induced Growth Arrest but Is Insufficient for Melanoma Formation. Cancer Cell, 2015, 27, 41-56.	16.8	106
24	Transposon mutagenesis identifies genetic drivers of BrafV600E melanoma. Nature Genetics, 2015, 47, 486-495.	21.4	61
25	PIK3CAH1047R Accelerates and Enhances KRASG12D-Driven Lung Tumorigenesis. Cancer Research, 2015, 75, 5378-5391.	0.9	27
26	PI3′-Kinase Inhibition Forestalls the Onset of MEK1/2 Inhibitor Resistance in <i>BRAF</i> -Mutated Melanoma. Cancer Discovery, 2015, 5, 143-153.	9.4	51
27	Activating BRAF and PIK3CA Mutations Cooperate to Promote Anaplastic Thyroid Carcinogenesis. Molecular Cancer Research, 2014, 12, 979-986.	3.4	92
28	Response to BRAF Inhibition in Melanoma Is Enhanced When Combined with Immune Checkpoint Blockade. Cancer Immunology Research, 2014, 2, 643-654.	3.4	226
29	BRAFV600E Cooperates with PI3K Signaling, Independent of AKT, to Regulate Melanoma Cell Proliferation. Molecular Cancer Research, 2014, 12, 447-463.	3.4	46
30	Diminished WNT → β-catenin → c-MYC signaling is a barrier for malignant progression of BRAF ^{V600E} -induced lung tumors. Genes and Development, 2014, 28, 561-575.	5.9	75
31	Enzyme meets a surprise target. Nature, 2014, 510, 225-226.	27.8	5
32	Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nature Reviews Cancer, 2014, 14, 455-467.	28.4	683
33	Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation. Human Molecular Genetics, 2014, 23, 682-692.	2.9	36
34	Isolation and Molecular Characterization of Circulating Melanoma Cells. Cell Reports, 2014, 7, 645-653.	6.4	91
35	p53 constrains progression to anaplastic thyroid carcinoma in a <i>Braf</i> -mutant mouse model of papillary thyroid cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1600-9.	7.1	131
36	The Fastest Western in Town: A Contemporary Twist on the Classic Western Blot Analysis. Journal of Visualized Experiments, 2014, , e51149.	0.3	21

MARTIN MCMAHON

#	Article	IF	CITATIONS
37	Mutationally Activated PIK3CAH1047R Cooperates with BRAFV600E to Promote Lung Cancer Progression. Cancer Research, 2013, 73, 6448-6461.	0.9	40
38	Oncogeneâ€dependent control of <scp>miRNA</scp> biogenesis and metastatic progression in a model of undifferentiated pleomorphic sarcoma. Journal of Pathology, 2013, 229, 132-140.	4.5	34
39	Autophagy Sustains Mitochondrial Glutamine Metabolism and Growth of <i>Braf</i> V600E–Driven Lung Tumors. Cancer Discovery, 2013, 3, 1272-1285.	9.4	382
40	Hematopoietic Expression of Oncogenic <i>BRAF</i> Promotes Aberrant Growth of Monocyte-Lineage Cells Resistant to PLX4720. Molecular Cancer Research, 2013, 11, 1530-1541.	3.4	7
41	Elucidating Distinct Roles for <i>NF1</i> in Melanomagenesis. Cancer Discovery, 2013, 3, 338-349.	9.4	213
42	Phenformin enhances the therapeutic benefit of BRAF ^{V600E} inhibition in melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18226-18231.	7.1	197
43	Differential AKT dependency displayed by mouse models of BRAFV600E-initiated melanoma. Journal of Clinical Investigation, 2013, 123, 5104-5118.	8.2	72
44	B-Raf Activation Cooperates with PTEN Loss to Drive c-Myc Expression in Advanced Prostate Cancer. Cancer Research, 2012, 72, 4765-4776.	0.9	87
45	Analysis of mRNA Profiles after MEK1/2 Inhibition in Human Pancreatic Cancer Cell Lines Reveals Pathways Involved in Drug Sensitivity. Molecular Cancer Research, 2012, 10, 1607-1619.	3.4	20
46	Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord. Development (Cambridge), 2012, 139, 2477-2487.	2.5	112
47	MEK1/2 Inhibition Elicits Regression of Autochthonous Lung Tumors Induced by KRASG12D or BRAFV600E. Cancer Research, 2012, 72, 3048-3059.	0.9	48
48	Abrogation of BRAF ^{V600E} -induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes and Development, 2012, 26, 1055-1069.	5.9	229
49	The intermediate-activity ^{L597V} BRAF mutant acts as an epistatic modifier of oncogenic RAS by enhancing signaling through the RAF/MEK/ERK pathway. Genes and Development, 2012, 26, 1945-1958.	5.9	54
50	An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature, 2012, 491, 449-453.	27.8	406
51	A Central Role for RAF→MEK→ERK Signaling in the Genesis of Pancreatic Ductal Adenocarcinoma. Cancer Discovery, 2012, 2, 685-693.	9.4	264
52	Cooperative interactions of BRAF ^{V600E} kinase and <i>CDKN2A</i> locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8710-8715.	7.1	77
53	E-cadherin regulates the behavior and fate of epithelial stem cells and their progeny in the mouse incisor. Developmental Biology, 2012, 366, 357-366.	2.0	52
54	BRAF V600E ―and PI3′Kâ€activated signaling pathways cooperate to regulate phosphorylation of ribosomal protein S6 in human melanoma cells. FASEB Journal, 2012, 26, 967.8.	0.5	0

MARTIN MCMAHON

#	Article	IF	CITATIONS
55	Regulated temporal-spatial astrocyte precursor cell proliferation involves BRAF signalling in mammalian spinal cord Journal of Cell Science, 2012, 125, e1-e1.	2.0	2
56	Control of Mitotic Spindle Angle by the RAS-Regulated ERK1/2 Pathway Determines Lung Tube Shape. Science, 2011, 333, 342-345.	12.6	158
57	Mutationally Activated BRAFV600E Elicits Papillary Thyroid Cancer in the Adult Mouse. Cancer Research, 2011, 71, 3863-3871.	0.9	87
58	Parsing out the complexity of RAF inhibitor resistance. Pigment Cell and Melanoma Research, 2011, 24, 361-365.	3.3	6
59	β-Catenin Signaling Controls Metastasis in Braf-Activated Pten-Deficient Melanomas. Cancer Cell, 2011, 20, 741-754.	16.8	317
60	Costello and cardioâ€facioâ€cutaneous syndromes: Moving toward clinical trials in RASopathies. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2011, 157, 136-146.	1.6	41
61	RAF translocations expand cancer targets. Nature Medicine, 2010, 16, 749-750.	30.7	5
62	Characterization of Melanoma Cells Capable of Propagating Tumors from a Single Cell. Cancer Research, 2010, 70, 388-397.	0.9	109
63	Down-regulation of Cdx2 in colorectal carcinoma cells by the Raf–MEK–ERK 1/2 pathway. Cellular Signalling, 2009, 21, 1846-1856.	3.6	23
64	BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nature Genetics, 2009, 41, 544-552.	21.4	1,022
65	Oncogenic BRAF ^{V600E} inhibits BIM expression to promote melanoma cell survival. Pigment Cell and Melanoma Research, 2008, 21, 534-544.	3.3	109
66	A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors. Genes and Development, 2007, 21, 379-384.	5.9	427
67	A Model of Intussusceptive Angiogenesis. Novartis Foundation Symposium, 2007, 283, 37-45.	1.1	8
68	Diverse Toll-like receptors utilize Tpl2 to activate extracellular signal-regulated kinase (ERK) in hemopoietic cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3274-3279.	7.1	138
69	Analysis of genomic DNA alterations and mRNA expression patterns in a panel of human pancreatic cancer cell lines. Genes Chromosomes and Cancer, 2005, 44, 37-51.	2.8	62
70	Pharmacologic Inhibition of RAF→MEK→ERK Signaling Elicits Pancreatic Cancer Cell Cycle Arrest Through Induced Expression of p27Kip1. Cancer Research, 2005, 65, 4870-4880.	0.9	126
71	Ras-Raf-Arf Signaling Critically Depends on the Dmp1 Transcription Factor. Molecular and Cellular Biology, 2005, 25, 220-232.	2.3	109
72	Conditional EGFR Promotes Cell Cycle Progression and Prevention of Apoptosis in the Absence of Autocrine Cytokines. Cell Cycle, 2005, 4, 822-830.	2.6	27

#	Article	IF	CITATIONS
73	The epidermal growth factor receptor gene family as a target for therapeutic intervention in numerous cancers: what's genetics got to do with it?. Expert Opinion on Therapeutic Targets, 2005, 9, 1009-1030.	3.4	47
74	Cooperative Regulation of the Cell Division Cycle by the Protein Kinases RAF and AKT. Molecular and Cellular Biology, 2004, 24, 10868-10881.	2.3	109
75	Extracellular Signal-regulated Kinase (ERK)-dependent Gene Expression Contributes to L1 Cell Adhesion Molecule-dependent Motility and Invasion. Journal of Biological Chemistry, 2004, 279, 28880-28888.	3.4	126
76	Effects of a conditionally active v-ErbB and an EGF-R inhibitor on transformation of NIH-3T3 cells and abrogation of cytokine dependency of hematopoietic cells. Oncogene, 2004, 23, 7810-7820.	5.9	19
77	Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature, 2003, 425, 851-856.	27.8	1,395
78	Effects of the RAF/MEK/ERK and PI3K/AKT signal transduction pathways on the abrogation of cytokine-dependence and prevention of apoptosis in hematopoietic cells. Oncogene, 2003, 22, 2478-2492.	5.9	95
79	Ras-induced serine phosphorylation of the focal adhesion protein paxillin is mediated by the Raf→MEK→ERK pathway. Experimental Cell Research, 2003, 287, 325-338.	2.6	27
80	ΔRaf-1:ER* Bypasses the Cyclic AMP Block of Extracellular Signal-Regulated Kinase 1 and 2 Activation but Not CDK2 Activation or Cell Cycle Reentry. Molecular and Cellular Biology, 2003, 23, 9303-9317.	2.3	18
81	De Novo Infection and Serial Transmission of Kaposi's Sarcoma-Associated Herpesvirus in Cultured Endothelial Cells. Journal of Virology, 2002, 76, 2440-2448.	3.4	185
82	Induction of Tubulogenesis in Telomerase-Immortalized Human Microvascular Endothelial Cells by Glioblastoma Cells. Experimental Cell Research, 2002, 273, 21-33.	2.6	102
83	Steroid receptor fusion proteins for conditional activation of raf-MEK-ERK signaling pathway. Methods in Enzymology, 2001, 332, 401-417.	1.0	41
84	Regulation of the p53 pathway by Ras, the plot thickens. Biochimica Et Biophysica Acta: Reviews on Cancer, 2001, 1471, M63-M71.	7.4	17
85	A conditional form of Bruton's tyrosine kinase is sufficient to activate multiple downstream signaling pathways via PLC Gamma 2 in B cells. BMC Immunology, 2001, 2, 4.	2.2	54
86	Induction of β3-Integrin Gene Expression by Sustained Activation of the Ras-Regulated Raf–MEK–Extracellular Signal-Regulated Kinase Signaling Pathway. Molecular and Cellular Biology, 2001, 21, 3192-3205.	2.3	121
87	Dual Growth Arrest Pathways in Astrocytes and Astrocytic Tumors in Response to Raf-1 Activation. Journal of Biological Chemistry, 2001, 276, 18871-18877.	3.4	52
88	Analysis of the transcriptional program induced by Raf in epithelial cells. Genes and Development, 2001, 15, 981-994.	5.9	222
89	A conditionally-active form of MEK1 results in autocrine transformation of human and mouse hematopoietic cells. Oncogene, 2000, 19, 526-536.	5.9	76
90	Induced Expression of Rnd3 Is Associated with Transformation of Polarized Epithelial Cells by the Raf–MEK–Extracellular Signal-Regulated Kinase Pathway. Molecular and Cellular Biology, 2000, 20, 9364-9375.	2.3	96

#	Article	IF	CITATIONS
91	Raf induces TGFÎ ² production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes and Development, 2000, 14, 2610-2622.	5.9	270
92	Opposing Effects of Ras on p53. Cell, 2000, 103, 321-330.	28.9	346
93	Raf-1 Causes Growth Suppression and Alteration of Neuroendocrine Markers in DMS53 Human Small-Cell Lung Cancer Cells. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 543-549.	2.9	48
94	Raf-1-induced cell cycle arrest in LNCaP human prostate cancer cells. , 1999, 72, 458-469.		65
95	The Repertoire of Fos and Jun Proteins Expressed during the G ₁ Phase of the Cell Cycle Is Determined by the Duration of Mitogen-Activated Protein Kinase Activation. Molecular and Cellular Biology, 1999, 19, 330-341.	2.3	174
96	Complementation of Defective Colony-Stimulating Factor 1 Receptor Signaling and Mitogenesis by Raf and v-Src. Molecular and Cellular Biology, 1999, 19, 1101-1115.	2.3	53
97	Persistent Activation of Mitogen-Activated Protein Kinases p42 and p44 and ets-2 Phosphorylation in Response to Colony-Stimulating Factor 1/c-fms Signaling. Molecular and Cellular Biology, 1998, 18, 5148-5156.	2.3	98
98	The mitogen-activated protein (MAP) kinase cascade can either stimulate or inhibit DNA synthesis in primary cultures of rat hepatocytes depending upon whether its activation is acute/phasic or chronic. Biochemical Journal, 1998, 330, 1451-1460.	3.7	193
99	Prolonged activation of the mitogen-activated protein kinase pathway promotes DNA synthesis in primary hepatocytes from p21Cip-1/WAF1-null mice, but not in hepatocytes from p16INK4a-null mice. Biochemical Journal, 1998, 336, 551-560.	3.7	64
100	Identification of Immediate–Early Gene Targets of the Raf-1 Serine/Threonine Protein Kinase Using an Estradiol-Dependent Fusion Protein, ΔRaf-1:ER. , 1997, 85, 137-152.		6
101	Regulation of Mitogen-activated Protein Kinase Phosphatase-1 Expression by Extracellular Signal-related Kinase-dependent and Ca2+-dependent Signal Pathways in Rat-1 Cells. Journal of Biological Chemistry, 1997, 272, 13309-13319.	3.4	113
102	Oncogenic Raf-1 Induces the Expression of Non-histone Chromosomal Architectural Protein HMGI-C via a p44/p42 Mitogen-activated Protein Kinase-dependent Pathway in Salivary Epithelial Cells. Journal of Biological Chemistry, 1997, 272, 25062-25070.	3.4	35
103	Mutations of critical amino acids affect the biological and biochemical properties of oncogenic A-Raf and Raf-1. Oncogene, 1997, 15, 1021-1033.	5.9	77
104	Raf revealed in life-or-death decisions. Nature Genetics, 1997, 16, 214-215.	21.4	45
105	Oncogenic Raf-1 Activates p70 S6 Kinase via a Mitogen-activated Protein Kinase-independent Pathway. Journal of Biological Chemistry, 1996, 271, 15762-15768.	3.4	82