Alexey Tarasov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8527311/publications.pdf Version: 2024-02-01

ALEYEY TARASOV

#	Article	IF	CITATIONS
1	Challenges and Opportunities of Tip-Enhanced Raman Spectroscopy in Liquids. Journal of Physical Chemistry C, 2021, 125, 21321-21340.	1.5	11
2	A transistor-based label-free immunosensor for rapid detection of tau protein. Biosensors and Bioelectronics, 2020, 159, 112129.	5.3	25
3	Transistor-based immunosensing in human serum samples without on-site calibration. Sensors and Actuators B: Chemical, 2019, 295, 153-158.	4.0	8
4	Analytical Model To Describe the Effect of Polyethylene Glycol on Ionic Screening of Analyte Charges in Transistor-Based Immunosensing. ACS Sensors, 2019, 4, 874-882.	4.0	38
5	Observation of Direct Electron Transfer from Glucose Dehydrogenase to Single Sheet Graphene Electrode. ECS Meeting Abstracts, 2019, , .	0.0	0
6	Highly sensitive, selective and label-free protein detection in physiological solutions using carbon nanotube transistors with nanobody receptors. Sensors and Actuators B: Chemical, 2018, 255, 1507-1516.	4.0	62
7	Graphene Biosensors: Grapheneâ€Based Electronic Immunosensor with Femtomolar Detection Limit in Whole Serum (Adv. Mater. Technol. 12/2018). Advanced Materials Technologies, 2018, 3, 1870046.	3.0	3
8	Grapheneâ€Based Electronic Immunosensor with Femtomolar Detection Limit in Whole Serum. Advanced Materials Technologies, 2018, 3, 1800186.	3.0	51
9	Direct, Label-Free, and Rapid Transistor-Based Immunodetection in Whole Serum. ACS Sensors, 2017, 2, 1278-1286.	4.0	52
10	Solution-Processed Doping of Trilayer WSe ₂ with Redox-Active Molecules. Chemistry of Materials, 2017, 29, 7296-7304.	3.2	25
11	Resonant Light-Induced Heating in Hybrid Cavity-Coupled 2D Transition-Metal Dichalcogenides. ACS Photonics, 2016, 3, 700-707.	3.2	27
12	Field-effect transistors based on wafer-scale, highly uniform few-layer p-type WSe ₂ . Nanoscale, 2016, 8, 2268-2276.	2.8	58
13	A potentiometric biosensor for rapid on-site disease diagnostics. Biosensors and Bioelectronics, 2016, 79, 669-678.	5.3	81
14	Flexible MoS ₂ Field-Effect Transistors for Gate-Tunable Piezoresistive Strain Sensors. ACS Applied Materials & Interfaces, 2015, 7, 12850-12855.	4.0	127
15	Enhanced Resonant Tunneling in Symmetric 2D Semiconductor Vertical Heterostructure Transistors. ACS Nano, 2015, 9, 5000-5008.	7.3	50
16	Gold-coated graphene field-effect transistors for quantitative analysis of protein–antibody interactions. 2D Materials, 2015, 2, 044008.	2.0	32
17	Controlled Doping of Largeâ€Area Trilayer MoS ₂ with Molecular Reductants and Oxidants. Advanced Materials, 2015, 27, 1175-1181.	11.1	183
18	Competing surface reactions limiting the performance of ion-sensitive field-effect transistors. Sensors and Actuators B: Chemical, 2015, 220, 500-507.	4.0	22

ALEXEY TARASOV

#	Article	IF	CITATIONS
19	Highly Uniform Trilayer Molybdenum Disulfide for Waferâ€Scale Device Fabrication. Advanced Functional Materials, 2014, 24, 6389-6400.	7.8	99
20	Investigation of the dominant 1/f noise source in silicon nanowire sensors. Sensors and Actuators B: Chemical, 2014, 191, 270-275.	4.0	46
21	Selective Sodium Sensing with Gold-Coated Silicon Nanowire Field-Effect Transistors in a Differential Setup. ACS Nano, 2013, 7, 5978-5983.	7.3	88
22	Sensing with liquid-gated graphene field-effect transistors. , 2012, , .		0
23	Understanding the Electrolyte Background for Biochemical Sensing with Ion-Sensitive Field-Effect Transistors. ACS Nano, 2012, 6, 9291-9298.	7.3	105
24	Graphene Transistors Are Insensitive to pH Changes in Solution. Nano Letters, 2011, 11, 3597-3600.	4.5	157