List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8527130/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coronary Magnetic Resonance Angiography for the Detection of Coronary Stenoses. New England Journal of Medicine, 2001, 345, 1863-1869.	27.0	1,281
2	Double-oblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography. Journal of the American College of Cardiology, 1999, 34, 524-531.	2.8	327
3	Detection of Pulmonary Vein and Left Atrial Scar after Catheter Ablation with Three-dimensional Navigator-gated Delayed Enhancement MR Imaging: Initial Experience ¹ . Radiology, 2007, 243, 690-695.	7.3	320
4	Three-Dimensional Black-Blood Cardiac Magnetic Resonance Coronary Vessel Wall Imaging Detects Positive Arterial Remodeling in Patients With Nonsignificant Coronary Artery Disease. Circulation, 2002, 106, 296-299.	1.6	292
5	In Vivo Molecular Imaging of Acute and Subacute Thrombosis Using a Fibrin-Binding Magnetic Resonance Imaging Contrast Agent. Circulation, 2004, 109, 2023-2029.	1.6	266
6	?Soap-Bubble? visualization and quantitative analysis of 3D coronary magnetic resonance angiograms. Magnetic Resonance in Medicine, 2002, 48, 658-666.	3.0	239
7	Submillimeter Three-dimensional Coronary MR Angiography with Real-time Navigator Correction: Comparison of Navigator Locations. Radiology, 1999, 212, 579-587.	7.3	236
8	Preliminary report on in vivo coronary MRA at 3 Tesla in humans. Magnetic Resonance in Medicine, 2002, 48, 425-429.	3.0	221
9	In Vivo Magnetic Resonance Imaging of Coronary Thrombosis Using a Fibrin-Binding Molecular Magnetic Resonance Contrast Agent. Circulation, 2004, 110, 1463-1466.	1.6	215
10	Coronary Magnetic Resonance Angiography in Adolescents and Young Adults With Kawasaki Disease. Circulation, 2002, 105, 908-911.	1.6	212
11	Age and Sex Distribution of Subclinical Aortic Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 849-854.	2.4	191
12	Cardiovascular magnetic resonance phase contrast imaging. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 71.	3.3	184
13	MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. European Radiology, 2008, 18, 1995-2005.	4.5	176
14	Molecular Magnetic Resonance Imaging of Atrial Clots in a Swine Model. Circulation, 2005, 112, 396-399.	1.6	169
15	Magnetic Conjugated Polymer Nanoparticles as Bimodal Imaging Agents. Journal of the American Chemical Society, 2010, 132, 9833-9842.	13.7	164
16	Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nature Medicine, 2011, 17, 383-388.	30.7	161
17	Contrast agent-enhanced, free-breathing, three-dimensional coronary magnetic resonance angiography. Journal of Magnetic Resonance Imaging, 1999, 10, 790-799.	3.4	156
18	Hemodynamics in the carotid artery bifurcation:. Journal of Biomechanics, 2000, 33, 137-144.	2.1	151

#	Article	IF	CITATIONS
19	Molecular Magnetic Resonance Imaging of Coronary Thrombosis and Pulmonary Emboli With a Novel Fibrin-Targeted Contrast Agent. Circulation, 2005, 111, 1377-1382.	1.6	146
20	3D coronary vessel wall imaging utilizing a local inversion technique with spiral image acquisition. Magnetic Resonance in Medicine, 2001, 46, 848-854.	3.0	136
21	Wholeâ€heart coronary MR angiography with 2D selfâ€navigated image reconstruction. Magnetic Resonance in Medicine, 2012, 67, 437-445.	3.0	135
22	CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Scientific Reports, 2020, 10, 13710.	3.3	122
23	Impact of bulk cardiac motion on right coronary MR angiography and vessel wall imaging. Journal of Magnetic Resonance Imaging, 2001, 14, 383-390.	3.4	121
24	Highly efficient respiratory motion compensated freeâ€breathing coronary mra using goldenâ€step Cartesian acquisition. Journal of Magnetic Resonance Imaging, 2015, 41, 738-746.	3.4	121
25	Dual cardiac–respiratory gated PET: implementation and results from a feasibility study. European Journal of Nuclear Medicine and Molecular Imaging, 2007, 34, 1447-1454.	6.4	119
26	Inherently self-calibrating non-cartesian parallel imaging. Magnetic Resonance in Medicine, 2005, 54, 1-8.	3.0	116
27	Noninvasive Magnetic Resonance Imaging Evaluation of Endothelial Permeability in Murine Atherosclerosis Using an Albumin-Binding Contrast Agent. Circulation, 2012, 126, 707-719.	1.6	112
28	Subclinical Coronary and Aortic Atherosclerosis Detected by Magnetic Resonance Imaging in Type 1 Diabetes With and Without Diabetic Nephropathy. Circulation, 2007, 115, 228-235.	1.6	111
29	Serial Contrast-Enhanced Cardiac Magnetic Resonance Imaging Demonstrates Regression of Hyperenhancement Within the Coronary Artery Wall in Patients After Acute Myocardial Infarction. JACC: Cardiovascular Imaging, 2009, 2, 580-588.	5.3	111
30	Combined Reporter Gene PET and Iron Oxide MRI for Monitoring Survival and Localization of Transplanted Cells in the Rat Heart. Journal of Nuclear Medicine, 2009, 50, 1088-1094.	5.0	110
31	Delayed-Enhancement Cardiovascular Magnetic Resonance Coronary Artery Wall Imaging. Journal of the American College of Cardiology, 2007, 50, 441-447.	2.8	108
32	Selective coronary artery plaque visualization and differentiation by contrast-enhanced inversion prepared MRI. European Heart Journal, 2006, 27, 1732-1736.	2.2	102
33	A Digital Preclinical PET/MRI Insert and Initial Results. IEEE Transactions on Medical Imaging, 2015, 34, 2258-2270.	8.9	97
34	Role of miR-195 in Aortic Aneurysmal Disease. Circulation Research, 2014, 115, 857-866.	4.5	93
35	Automatic vessel segmentation using active contours in cine phase contrast flow measurements. Journal of Magnetic Resonance Imaging, 1999, 10, 41-51.	3.4	90
36	High-frequency speckle tracking echocardiography in the assessment of left ventricular function and remodeling after murine myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1371-H1383.	3.2	90

#	Article	IF	CITATIONS
37	Molecular imaging of cardiac remodelling after myocardial infarction. Basic Research in Cardiology, 2018, 113, 10.	5.9	88
38	Comparison of aortic elasticity determined by cardiovascular magnetic resonance imaging in obese versus lean adults. American Journal of Cardiology, 2003, 91, 195-199.	1.6	86
39	Highly efficient nonrigid motionâ€corrected 3D wholeâ€heart coronary vessel wall imaging. Magnetic Resonance in Medicine, 2017, 77, 1894-1908.	3.0	85
40	From Compressed-Sensing to Artificial Intelligence-Based Cardiac MRI Reconstruction. Frontiers in Cardiovascular Medicine, 2020, 7, 17.	2.4	85
41	Navigator-Gated Free-Breathing Three-Dimensional Balanced Fast Field Echo (TrueFISP) Coronary Magnetic Resonance Angiography. Investigative Radiology, 2002, 37, 637-642.	6.2	84
42	Detection of Coronary Artery Anomalies in Infants and Young Children with Congenital Heart Disease by Using MR Imaging. Radiology, 2011, 259, 240-247.	7.3	81
43	Free-breathing 3D Steady-State Free Precession Coronary MR Angiography with Radial k-Space Sampling: Comparison with Cartesian k-Space Sampling and Cartesian Gradient-Echo Coronary MR Angiography—Pilot Study. Radiology, 2004, 231, 581-586.	7.3	80
44	In Vivo Magnetic Resonance Imaging of Experimental Thrombosis in a Rabbit Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1556-1560.	2.4	79
45	Highâ€dimensionality undersampled patchâ€based reconstruction (HDâ€PROST) for accelerated multiâ€contrast MRI. Magnetic Resonance in Medicine, 2019, 81, 3705-3719.	3.0	79
46	Free-Breathing Black-Blood Coronary MR Angiography: Initial Results. Radiology, 2001, 219, 278-283.	7.3	75
47	Differential Impact of Age, Sex, and Hypertension on Aortic Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 155-159.	2.4	75
48	Magnetic Resonance T ₁ Relaxation Time of Venous Thrombus Is Determined by Iron Processing and Predicts Susceptibility to Lysis. Circulation, 2013, 128, 729-736.	1.6	74
49	Three-dimensional high-resolution fast spin-echo coronary magnetic resonance angiography. Magnetic Resonance in Medicine, 2001, 45, 206-211.	3.0	73
50	Fiveâ€minute wholeâ€heart coronary MRA with subâ€millimeter isotropic resolution, 100% respiratory scan efficiency, and 3Dâ€PROST reconstruction. Magnetic Resonance in Medicine, 2019, 81, 102-115.	3.0	73
51	Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning. Medical Image Analysis, 2019, 55, 136-147.	11.6	71
52	Direct comparison of 3D spiral vs. Cartesian gradient-echo coronary magnetic resonance angiography. Magnetic Resonance in Medicine, 2001, 46, 789-794.	3.0	70
53	Coronary magnetic resonance angiography and vessel wall imaging in children with Kawasaki disease. Pediatric Radiology, 2007, 37, 666-673.	2.0	68
54	MRI of Coronary Wall Remodeling in a Swine Model of Coronary Injury Using an Elastin-Binding Contrast Agent. Circulation: Cardiovascular Imaging, 2011, 4, 147-155.	2.6	68

#	Article	IF	CITATIONS
55	Molecular Imaging of Early α _v l² ₃ Integrin Expression Predicts Long-Term Left-Ventricle Remodeling After Myocardial Infarction in Rats. Journal of Nuclear Medicine, 2012, 53, 318-323.	5.0	64
56	Free-breathing 3D coronary MRA: The impact of ?lsotropic? image resolution. Journal of Magnetic Resonance Imaging, 2000, 11, 389-393.	3.4	62
57	Renal Arteries: Navigator-gated Balanced Fast Field-Echo Projection MR Angiography with Aortic Spin Labeling: Initial Experience. Radiology, 2002, 225, 589-596.	7.3	61
58	A New ¹⁸ F-Labeled Myocardial PET Tracer: Myocardial Uptake After Permanent and Transient Coronary Occlusion in Rats. Journal of Nuclear Medicine, 2008, 49, 1715-1722.	5.0	60
59	Molecular Magnetic Resonance Imaging of Myocardial Perfusion With EP-3600, a Collagen-Specific Contrast Agent. Circulation, 2009, 119, 1768-1775.	1.6	58
60	Scan Reproducibility of Magnetic Resonance Imaging Assessment of Aortic Atherosclerosis Burden. Journal of Cardiovascular Magnetic Resonance, 2001, 3, 331-338.	3.3	58
61	Coronary MR Angiography: Comparison of Quantitative and Qualitative Data from Four Techniques. American Journal of Roentgenology, 2004, 182, 515-521.	2.2	57
62	Elastin imaging enables noninvasive staging and treatment monitoring of kidney fibrosis. Science Translational Medicine, 2019, 11, .	12.4	56
63	Molecular Magnetic Resonance Imaging of Pulmonary Emboli with a Fibrin-specific Contrast Agent. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 494-500.	5.6	55
64	Magnetic resonance imaging of myocardial injury and ventricular torsion after marathon running. Clinical Science, 2011, 120, 143-152.	4.3	55
65	Fibrin-Targeted Magnetic Resonance Imaging Allows In Vivo Quantification of Thrombus Fibrin Content and Identifies Thrombi Amenable for Thrombolysis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1193-1198.	2.4	54
66	Initial Experiences with In Vivo Right Coronary Artery Human MR Vessel Wall Imaging at 3 Tesla. Journal of Cardiovascular Magnetic Resonance, 2003, 5, 589-594.	3.3	53
67	A fast 3D approach for coronary MRA. Journal of Magnetic Resonance Imaging, 1999, 10, 821-825.	3.4	52
68	Molecular MR Imaging of Human Thrombi in a Swine Model of Pulmonary Embolism Using a Fibrin-Specific Contrast Agent. Investigative Radiology, 2007, 42, 586-595.	6.2	51
69	Late gadolinium enhancement of acute myocardial infarction in mice at 7T: Cineâ€FLASH versus inversion recovery. Journal of Magnetic Resonance Imaging, 2010, 32, 878-886.	3.4	50
70	Multiâ€parametric liver tissue characterization using MR fingerprinting: Simultaneous T ₁ , T ₂ , T ₂ *, and fat fraction mapping. Magnetic Resonance in Medicine, 2020, 84, 2625-2635.	3.0	50
71	Impact of navigator timing on free-breathing submillimeter 3D coronary magnetic resonance angiography. Magnetic Resonance in Medicine, 2002, 47, 196-201.	3.0	49
72	Selective three-dimensional visualization of the coronary arterial lumen using arterial spin tagging. Magnetic Resonance in Medicine, 2002, 47, 322-329.	3.0	48

#	Article	IF	CITATIONS
73	Firstâ€pass contrastâ€enhanced myocardial perfusion MRI in mice on a 3â€T clinical MR scanner. Magnetic Resonance in Medicine, 2010, 64, 1592-1598.	3.0	48
74	Gd-containing conjugated polymer nanoparticles: bimodal nanoparticles for fluorescence and MRI imaging. Nanoscale, 2014, 6, 8376-8386.	5.6	48
75	Water–fat Dixon cardiac magnetic resonance fingerprinting. Magnetic Resonance in Medicine, 2020, 83, 2107-2123.	3.0	48
76	Plow quantitation with echo-planar phase-contrast velocity mapping: In vitro and in vivo evaluation. Journal of Magnetic Resonance Imaging, 1995, 5, 656-662.	3.4	47
77	Temperature quantification using the proton frequency shift technique: In vitro and in vivo validation in an open 0.5 tesla interventional MR scanner during RF ablation. Journal of Magnetic Resonance Imaging, 2001, 13, 437-444.	3.4	47
78	Coronary magnetic resonance imaging: visualization of the vessel lumen and the vessel wall and molecular imaging of arteriothrombosis. European Radiology, 2006, 16, 1-14.	4.5	47
79	Prospective respiratory motion correction for coronary MR angiography using a 2D image navigator. Magnetic Resonance in Medicine, 2013, 69, 486-494.	3.0	46
80	Sparsity and locally low rank regularization for MR fingerprinting. Magnetic Resonance in Medicine, 2019, 81, 3530-3543.	3.0	46
81	Noninvasive Assessment of Atherosclerotic Plaque Progression in ApoE ^{â^'/â^'} Mice Using Susceptibility Gradient Mapping. Circulation: Cardiovascular Imaging, 2011, 4, 295-303.	2.6	45
82	The impact of spatial resolution and respiratory motion on MR imaging of atherosclerotic plaque. Journal of Magnetic Resonance Imaging, 2003, 17, 538-544.	3.4	44
83	In Vivo Magnetization Transfer and Diffusion-Weighted Magnetic Resonance Imaging Detects Thrombus Composition in a Mouse Model of Deep Vein Thrombosis. Circulation: Cardiovascular Imaging, 2013, 6, 433-440.	2.6	44
84	In Vivo Assessment of Aortic Aneurysm Wall Integrity Using Elastin-Specific Molecular Magnetic Resonance Imaging. Circulation: Cardiovascular Imaging, 2014, 7, 679-689.	2.6	43
85	3D myocardial <i>T</i> ₁ mapping using saturation recovery. Journal of Magnetic Resonance Imaging, 2017, 46, 218-227.	3.4	43
86	Clinical value of dark-blood late gadolinium enhancement cardiovascular magnetic resonance without additional magnetization preparation. Journal of Cardiovascular Magnetic Resonance, 2019, 21, 44.	3.3	43
87	Monitoring of Radio Frequency Tissue Ablation in an Interventional Magnetic Resonance Environment. Investigative Radiology, 1997, 32, 671-678.	6.2	43
88	MR Imaging of the Arterial Vessel Wall: Molecular Imaging from Bench to Bedside. Radiology, 2013, 269, 34-51.	7.3	42
89	Wholeâ€Heart Coronary <scp>MRA</scp> with 3D Affine Motion Correction Using 3D Imageâ€Based Navigation. Magnetic Resonance in Medicine, 2014, 71, 173-181.	3.0	42
90	Motionâ€corrected simultaneous cardiac positron emission tomography and coronary MR angiography with high acquisition efficiency. Magnetic Resonance in Medicine, 2018, 79, 339-350.	3.0	42

#	Article	IF	CITATIONS
91	Assessment of Myocardial Infarction and Postinfarction Scar Remodeling With an Elastin-Specific Magnetic Resonance Agent. Circulation: Cardiovascular Imaging, 2014, 7, 321-329.	2.6	41
92	In vivo assessment of intraplaque and endothelial fibrin in ApoEâ^'/â^' mice by molecular MRI. Atherosclerosis, 2012, 222, 43-49.	0.8	40
93	Correction for heart rate variability improves coronary magnetic resonance angiography. Journal of Magnetic Resonance Imaging, 2005, 22, 577-582.	3.4	39
94	Congenital Heart Disease: Cardiovascular MR Imaging by Using an Intravascular Blood Pool Contrast Agent. Radiology, 2011, 260, 680-688.	7.3	38
95	100% Efficient threeâ€dimensional coronary MR angiography with twoâ€dimensional beatâ€toâ€beat translational and binâ€toâ€bin affine motion correction. Magnetic Resonance in Medicine, 2015, 74, 756-764.	3.0	38
96	Breathhold Three-Dimensional Coronary Magnetic Resonance Angiography Using Real-Time Navigator Technology. Journal of Cardiovascular Magnetic Resonance, 1999, 1, 233-238.	3.3	37
97	Coronary MR angiography. Magnetic Resonance Imaging Clinics of North America, 2003, 11, 81-99.	1.1	37
98	Characterization of carotid artery plaques with USPIO-enhanced MRI: assessment of inflammation and vascularity as in vivo imaging biomarkers for plaque vulnerability. International Journal of Cardiovascular Imaging, 2011, 27, 901-912.	1.5	37
99	Multimodality Imaging of Subclinical Aortic Atherosclerosis. Hypertension, 2013, 61, 609-614.	2.7	37
100	Rigid motion orrected magnetic resonance fingerprinting. Magnetic Resonance in Medicine, 2019, 81, 947-961.	3.0	37
101	3D freeâ€breathing cardiac magnetic resonance fingerprinting. NMR in Biomedicine, 2020, 33, e4370.	2.8	37
102	3D whole-heart isotropic sub-millimeter resolution coronary magnetic resonance angiography with non-rigid motion-compensated PROST. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 24.	3.3	37
103	Coronary Magnetic Resonance Angiography for Assessment of the Stent Lumen: A Phantom Study. Journal of Cardiovascular Magnetic Resonance, 2002, 4, 359-367.	3.3	36
104	Freeâ€running 3D whole heart myocardial T 1 mapping with isotropic spatial resolution. Magnetic Resonance in Medicine, 2019, 82, 1331-1342.	3.0	36
105	Cardiac MRI to investigate myocardial scar and coronary venous anatomy using a slow infusion of dimeglumine gadobenate in patients undergoing assessment for cardiac resynchronization therapy. Journal of Magnetic Resonance Imaging, 2011, 33, 87-95.	3.4	35
106	Three-Dimensional Imaging of the Aortic Vessel Wall Using an Elastin-Specific Magnetic Resonance Contrast Agent. Investigative Radiology, 2012, 47, 438-444.	6.2	35
107	Blackâ€Blood Contrast in Cardiovascular MRI. Journal of Magnetic Resonance Imaging, 2022, 55, 61-80.	3.4	35
108	Quantitative Assessment of Left Ventricular Function with Interactive Real-Time Spiral and Radial MR Imaging. Radiology, 2003, 227, 870-876.	7.3	34

#	Article	IF	CITATIONS
109	Navigator-Gated Coronary Magnetic Resonance Angiography Using Steady-State-Free-Precession. Investigative Radiology, 2003, 38, 263-268.	6.2	34
110	Advanced Respiratory Motion Compensation for Coronary MR Angiography. Sensors, 2013, 13, 6882-6899.	3.8	34
111	Assessment of Myocardial Remodeling Using an Elastin/Tropoelastin Specific Agent with High Field Magnetic Resonance Imaging (MRI). Journal of the American Heart Association, 2015, 4, e001851.	3.7	34
112	Characterization of Coronary Atherosclerosis by Magnetic Resonance Imaging. Circulation, 2013, 128, 1244-1255.	1.6	33
113	Simultaneous bright―and blackâ€blood wholeâ€heart MRI for noncontrast enhanced coronary lumen and thrombus visualization. Magnetic Resonance in Medicine, 2018, 79, 1460-1472.	3.0	33
114	Non-Rigid Respiratory Motion Estimation of Whole-Heart Coronary MR Images Using Unsupervised Deep Learning. IEEE Transactions on Medical Imaging, 2021, 40, 444-454.	8.9	33
115	Motion artifact reduction and vessel enhancement for free-breathing navigator-gated coronary MRA using 3Dk-space reordering. Magnetic Resonance in Medicine, 2001, 45, 645-652.	3.0	32
116	MR coronary vessel wall imaging: Comparison between radial and spiral k-space sampling. Journal of Magnetic Resonance Imaging, 2006, 23, 757-762.	3.4	32
117	Three-dimensional Dual-Phase Whole-Heart MR Imaging: Clinical Implications for Congenital Heart Disease. Radiology, 2012, 263, 547-554.	7.3	32
118	3D whole-heart phase sensitive inversion recovery CMR for simultaneous black-blood late gadolinium enhancement and bright-blood coronary CMR angiography. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 94.	3.3	32
119	Concurrent Molecular Magnetic Resonance Imaging of Inflammatory Activity and Extracellular Matrix Degradation for the Prediction of Aneurysm Rupture. Circulation: Cardiovascular Imaging, 2019, 12, e008707.	2.6	32
120	A multi-scale variational neural network for accelerating motion-compensated whole-heart 3D coronary MR angiography. Magnetic Resonance Imaging, 2020, 70, 155-167.	1.8	32
121	Deepâ€learning based superâ€resolution for 3D isotropic coronary MR angiography in less than a minute. Magnetic Resonance in Medicine, 2021, 86, 2837-2852.	3.0	32
122	Coronary MR Imaging Using Free-Breathing 3D Steady-State Free Precession with Radial k-space Sampling. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2003, 175, 1330-1334.	1.3	31
123	Congenital Heart Disease in Children: Coronary MR Angiography during Systole and Diastole with Dual Cardiac Phase Whole-Heart Imaging. Radiology, 2011, 260, 232-240.	7.3	31
124	Flowâ€independent 3D wholeâ€heart vessel wall imaging using an interleaved T2â€preparation acquisition. Magnetic Resonance in Medicine, 2013, 69, 150-157.	3.0	31
125	Noninvasive MRI Monitoring of the Effect of Interventions on Endothelial Permeability in Murine Atherosclerosis Using an Albuminâ€Binding Contrast Agent. Journal of the American Heart Association, 2013, 2, e000402.	3.7	31
126	Initial experiences with in vivo intravascular coronary vessel wall imaging. Journal of Magnetic Resonance Imaging, 2003, 17, 615-619.	3.4	30

#	Article	IF	CITATIONS
127	A new framework for interleaved scanning in cardiovascular MR: Application to imageâ€based respiratory motion correction in coronary MR angiography. Magnetic Resonance in Medicine, 2015, 73, 692-696.	3.0	30
128	â€~Image-navigated 3-dimensional late gadolinium enhancement cardiovascular magnetic resonance imaging: feasibility and initial clinical resultsâ€~. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 97.	3.3	30
129	Simultaneous Assessment of Cardiac Inflammation and Extracellular Matrix Remodeling After Myocardial Infarction. Circulation: Cardiovascular Imaging, 2018, 11, .	2.6	30
130	Superiority of prone position in free-breathing 3D coronary MRA in patients with coronary disease. Journal of Magnetic Resonance Imaging, 2001, 13, 185-191.	3.4	29
131	Characterizing radial undersampling artifacts for cardiac applications. Magnetic Resonance in Medicine, 2006, 55, 396-403.	3.0	29
132	Vascular Remodeling and Plaque Vulnerability in a Rabbit Model of Atherosclerosis: Comparison of Delayed-Enhancement MR Imaging with an Elastin-specific Contrast Agent and Unenhanced Black-Blood MR Imaging. Radiology, 2014, 271, 390-399.	7.3	29
133	Coronary MR angiography at 3T: fat suppression versus water-fat separation. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 733-738.	2.0	29
134	Free-running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole-heart coverage and isotropic spatial resolution. Magnetic Resonance Imaging, 2019, 63, 159-169.	1.8	29
135	Comparison of 3D Segmented Gradient-Echo and Steady-State Free Precession Coronary MRI Sequences in Patients with Coronary Artery Disease. American Journal of Roentgenology, 2005, 185, 103-109.	2.2	28
136	The emerging role of cardiovascular magnetic resonance in the evaluation of Kawasaki disease. International Journal of Cardiovascular Imaging, 2013, 29, 1787-1798.	1.5	28
137	Molecular imaging of the extracellular matrix in the context of atherosclerosis. Advanced Drug Delivery Reviews, 2017, 113, 49-60.	13.7	28
138	Clinical comparison of sub-mm high-resolution non-contrast coronary CMR angiography against coronary CT angiography in patients with low-intermediate risk of coronary artery disease: a single center trial. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 57.	3.3	28
139	The impact of navigator timing parameters and navigator spatial resolution on 3D coronary magnetic resonance angiography. Journal of Magnetic Resonance Imaging, 2001, 14, 311-318.	3.4	27
140	Constitutive glycogen synthase kinase-3α/β activity protects against chronic β-adrenergic remodelling of the heart. Cardiovascular Research, 2010, 87, 494-503.	3.8	27
141	A Self-Normalization Reconstruction Technique for PET Scans Using the Positron Emission Data. IEEE Transactions on Medical Imaging, 2012, 31, 2234-2240.	8.9	27
142	Optimized respiratoryâ€resolved motionâ€compensated 3 <scp>D C</scp> artesian coronary <scp>MR</scp> angiography. Magnetic Resonance in Medicine, 2018, 80, 2618-2629.	3.0	27
143	Motion-corrected whole-heart PET-MR for the simultaneous visualisation of coronary artery integrity and myocardial viability: an initial clinical validation. European Journal of Nuclear Medicine and Molecular Imaging, 2018, 45, 1975-1986.	6.4	27
144	<scp>T1</scp> , <scp>T2,</scp> and Fat Fraction Cardiac MR Fingerprinting: Preliminary Clinical Evaluation. Journal of Magnetic Resonance Imaging, 2021, 53, 1253-1265.	3.4	27

#	Article	IF	CITATIONS
145	Assessment of prosthetic aortic valve performance by magnetic resonance velocity imaging. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2000, 10, 18-26.	2.0	26
146	Sandwich Immunoassay for Soluble Glycoprotein VI in Patients with Symptomatic Coronary Artery Disease. Clinical Chemistry, 2011, 57, 898-904.	3.2	26
147	Single breath-hold assessment of cardiac function using an accelerated 3D single breath-hold acquisition technique - comparison of an intravascular and extravascular contrast agent. Journal of Cardiovascular Magnetic Resonance, 2012, 14, 58.	3.3	26
148	Molecular MRI of Atherosclerosis. Molecules, 2013, 18, 14042-14069.	3.8	26
149	Coronary Imaging With Cardiovascular Magnetic Resonance: Current State of the Art. Progress in Cardiovascular Diseases, 2011, 54, 240-252.	3.1	25
150	Tropoelastin. Circulation: Cardiovascular Imaging, 2018, 11, .	2.6	25
151	Coronary Magnetic Resonance Angiography. JACC: Cardiovascular Imaging, 2020, 13, 2653-2672.	5.3	25
152	Molecular Imaging of Abdominal Aortic Aneurysms. Trends in Molecular Medicine, 2017, 23, 150-164.	6.7	24
153	Motion-corrected 3D whole-heart water-fat high-resolution late gadolinium enhancement cardiovascular magnetic resonance imaging. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 53.	3.3	24
154	Dark-blood late gadolinium enhancement cardiovascular magnetic resonance for improved detection of subendocardial scar: a review of current techniques. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 96.	3.3	24
155	Visualization of Coronary Wall Atherosclerosis in Asymptomatic Subjects and Patients with Coronary Artery Disease Using Magnetic Resonance Imaging. PLoS ONE, 2010, 5, e12998.	2.5	23
156	Dual Inversion-Recovery MR Imaging Sequence for Reduced Blood Signal on Late Gadolinium-enhanced Images of Myocardial Scar. Radiology, 2012, 264, 242-249.	7.3	23
157	3D wholeâ€heart isotropicâ€resolution motionâ€compensated joint T ₁ /T ₂ mapping and water/fat imaging. Magnetic Resonance in Medicine, 2020, 84, 3009-3026.	3.0	23
158	Respiratory motion-compensated high-resolution 3D whole-heart T1ï•mapping. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 12.	3.3	23
159	Low-Cost MR-Compatible Moving Heart Phantom. Journal of Cardiovascular Magnetic Resonance, 2000, 2, 181-187.	3.3	22
160	Comparison of fat suppression strategies in 3D spiral coronary magnetic resonance angiography. Journal of Magnetic Resonance Imaging, 2002, 15, 462-466.	3.4	22
161	Detection of coronary plaques using MR coronary vessel wall imaging: validation of findings with intravascular ultrasound. European Radiology, 2013, 23, 115-124.	4.5	22
162	Increased Vascular Permeability Measured With an Albumin-Binding Magnetic Resonance Contrast Agent Is a Surrogate Marker of Rupture-Prone Atherosclerotic Plaque. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	22

#	Article	IF	CITATIONS
163	Novel Approach for InÂVivo Detection of Vulnerable Coronary Plaques Using Molecular 3-T CMR Imaging With an Albumin-Binding Probe. JACC: Cardiovascular Imaging, 2019, 12, 297-306.	5.3	22
164	Nucleic Acid Delivery to Magnetically-Labeled Cells in a 2D Array and at the Luminal Surface of Cell Culture Tube and Their Detection by MRI. Journal of Biomedical Nanotechnology, 2009, 5, 692-706.	1.1	22
165	Generalized lowâ€rank nonrigid motionâ€corrected reconstruction for MR fingerprinting. Magnetic Resonance in Medicine, 2022, 87, 746-763.	3.0	22
166	Molecular Coronary MR Imaging of Human Thrombi using EP-2104R, a Fibrin-Targeted Contrast Agent: Experimental Study in a Swine Model. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2007, 179, 1166-1173.	1.3	21
167	PET/CT and MR imaging biomarker of lipid-rich plaques using [64Cu]-labeled scavenger receptor (CD68-Fc). International Journal of Cardiology, 2014, 177, 287-291.	1.7	21
168	Diagnostic performance of image navigated coronary CMR angiography in patients with coronary artery disease. Journal of Cardiovascular Magnetic Resonance, 2016, 19, 68.	3.3	21
169	Endâ€ŧoâ€end deep learning nonrigid motionâ€corrected reconstruction for highly accelerated freeâ€breathing coronary MRA. Magnetic Resonance in Medicine, 2021, 86, 1983-1996.	3.0	21
170	Simultaneous T ₁ , T ₂ , and T _{1Ï} cardiac magnetic resonance fingerprinting for contrast agent–free myocardial tissue characterization. Magnetic Resonance in Medicine, 2022, 87, 1992-2002.	3.0	21
171	Myocardial T1, T2, T2*, and fat fraction quantification via lowâ€rank motionâ€corrected cardiac MR fingerprinting. Magnetic Resonance in Medicine, 2022, 87, 2757-2774.	3.0	21
172	Individualized cardiovascular risk assessment by cardiovascular magnetic resonance. Future Cardiology, 2014, 10, 273-289.	1.2	20
173	Nonâ€contrast enhanced simultaneous 3D wholeâ€heart brightâ€blood pulmonary veins visualization and blackâ€blood quantification of atrial wall thickness. Magnetic Resonance in Medicine, 2019, 81, 1066-1079.	3.0	20
174	Targeted Molecular Iron Oxide Contrast Agents for Imaging Atherosclerotic Plaque. Nanotheranostics, 2020, 4, 184-194.	5.2	20
175	Isotropic 3D Cartesian single breathâ€hold CINE MRI with multiâ€bin patchâ€based lowâ€rank reconstruction. Magnetic Resonance in Medicine, 2020, 84, 2018-2033.	3.0	20
176	MRI of Coronary Vessel Walls Using Radial k-Space Sampling and Steady-State Free Precession Imaging. American Journal of Roentgenology, 2006, 186, S401-S406.	2.2	19
177	MRI-based prediction of adverse cardiac remodeling after murine myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H309-H314.	3.2	19
178	Magnetic Resonance Coronary Angiography: Where Are We Today?. Current Cardiology Reports, 2013, 15, 328.	2.9	19
179	Whole-heart coronary MR angiography using image-based navigation for the detection of coronary anomalies in adult patients with congenital heart disease. Journal of Magnetic Resonance Imaging, 2016, 43, 947-955.	3.4	19
180	Technical note: Accelerated nonrigid motionâ€compensated isotropic 3D coronary <scp>MR</scp> angiography. Medical Physics, 2018, 45, 214-222.	3.0	19

#	Article	IF	CITATIONS
181	Current and Emerging Preclinical Approaches for Imaging-Based Characterization of Atherosclerosis. Molecular Imaging and Biology, 2018, 20, 869-887.	2.6	19
182	Gold nanomaterials functionalised with gadolinium chelates and their application in multimodal imaging and therapy. Chemical Communications, 2020, 56, 4037-4046.	4.1	19
183	LAPNet: Non-Rigid Registration Derived in k-Space for Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging, 2021, 40, 3686-3697.	8.9	19
184	Magnetic Resonance Imaging: Utility as a Molecular Imaging Modality. Current Topics in Developmental Biology, 2005, 70, 1-33.	2.2	18
185	Cardiac MR Motion Artefact Correction from K-space Using Deep Learning-Based Reconstruction. Lecture Notes in Computer Science, 2018, , 21-29.	1.3	18
186	Magnetic Resonance Fingerprinting Using Recurrent Neural Networks. , 2019, , .		18
187	Motion corrected water/fat wholeâ€heart coronary MR angiography with 100% respiratory efficiency. Magnetic Resonance in Medicine, 2019, 82, 732-742.	3.0	18
188	Prosthetic heart valve evaluation by magnetic resonance imaging. European Journal of Cardio-thoracic Surgery, 1999, 16, 300-305.	1.4	17
189	Coronary magnetic resonance imaging: Current status. Current Problems in Cardiology, 2002, 27, 275-333.	2.4	17
190	Positron Emission Tomography/Computed Tomographic and Magnetic Resonance Imaging in a Murine Model of Progressive Atherosclerosis Using ⁶⁴ Cu-Labeled Glycoprotein VI-Fc. Circulation: Cardiovascular Imaging, 2013, 6, 957-964.	2.6	17
191	PET/MRI of atherosclerosis. Cardiovascular Diagnosis and Therapy, 2020, 10, 1120-1139.	1.7	17
192	3D Dixon water-fat LGE imaging with image navigator and compressed sensing in cardiac MRI. European Radiology, 2021, 31, 3951-3961.	4.5	17
193	Inversion recovery radial MRI with interleaved projection sets. Magnetic Resonance in Medicine, 2006, 55, 1150-1156.	3.0	16
194	Assessment of inflammation with a very small ironâ€oxide particle in a murine model of reperfused myocardial infarction. Journal of Magnetic Resonance Imaging, 2014, 39, 598-608.	3.4	16
195	Imaging sequence for joint myocardial <scp>T</scp> ₁ mapping and fat/water separation. Magnetic Resonance in Medicine, 2019, 81, 486-494.	3.0	16
196	Accelerated 3D T ₂ mapping with dictionaryâ€based matching for prostate imaging. Magnetic Resonance in Medicine, 2019, 81, 1795-1805.	3.0	16
197	Imaging of injured and atherosclerotic arteries in mice using fluorescence-labeled glycoprotein VI-Fc. European Journal of Radiology, 2011, 79, e63-e69.	2.6	15
198	Zoom imaging for rapid aortic vessel wall imaging and cardiovascular risk assessment. Journal of Magnetic Resonance Imaging, 2011, 34, 279-285.	3.4	15

#	Article	IF	CITATIONS
199	Coronary artery size and origin imaging in children: a comparative study of MRI and trans-thoracic echocardiography. BMC Medical Imaging, 2015, 15, 48.	2.7	15
200	MRI with gadofosveset: A potential marker for permeability in myocardial infarction. Atherosclerosis, 2018, 275, 400-408.	0.8	15
201	Simultaneous comprehensive liver T ₁ , T ₂ , , T _{1Ï} , and fat fraction characterization with MR fingerprinting. Magnetic Resonance in Medicine, 2022, 87, 1980-1991.	3.0	15
202	Cardiovascular Magnetic Resonance Imaging in Small Animals. Progress in Molecular Biology and Translational Science, 2012, 105, 227-261.	1.7	14
203	Accelerated magnetic resonance fingerprinting using soft-weighted key-hole (MRF-SOHO). PLoS ONE, 2018, 13, e0201808.	2.5	14
204	Accelerated freeâ€breathing wholeâ€heart 3D T ₂ mapping with high isotropic resolution. Magnetic Resonance in Medicine, 2020, 83, 988-1002.	3.0	14
205	Simultaneous molecular MRI of extracellular matrix collagen and inflammatory activity to predict abdominal aortic aneurysm rupture. Scientific Reports, 2020, 10, 15206.	3.3	14
206	Noninvasive imaging of vascular permeability to predict the risk of rupture in abdominal aortic aneurysms using an albumin-binding probe. Scientific Reports, 2020, 10, 3231.	3.3	14
207	High-Spatial-Resolution 3D Whole-Heart MRI T2 Mapping for Assessment of Myocarditis. Radiology, 2021, 298, 578-586.	7.3	14
208	Hyperemic stress myocardial perfusion cardiovascular magnetic resonance in mice at 3 Tesla: initial experience and validation against microspheres. Journal of Cardiovascular Magnetic Resonance, 2013, 15, 62.	3.3	13
209	Molecular magnetic resonance imaging of atherosclerotic vessel wall disease. European Radiology, 2016, 26, 910-920.	4.5	13
210	Dual-probe molecular MRI for the in vivo characterization of atherosclerosis in a mouse model: Simultaneous assessment of plaque inflammation and extracellular-matrix remodeling. Scientific Reports, 2019, 9, 13827.	3.3	13
211	Molecular and Nonmolecular Magnetic Resonance Coronary and Carotid Imaging. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 569-582.	2.4	13
212	Sustained Focal Vascular Inflammation Accelerates Atherosclerosis in Remote Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 2159-2170.	2.4	13
213	Fully selfâ€gated freeâ€running 3D Cartesian cardiac CINE with isotropic wholeâ€heart coverage in less than 2 min. NMR in Biomedicine, 2021, 34, e4409.	2.8	13
214	Simultaneous [18F]fluoride and gadobutrol enhanced coronary positron emission tomography/magnetic resonance imaging for <i>in vivo</i> plaque characterization. European Heart Journal Cardiovascular Imaging, 2022, 23, 1391-1398.	1.2	13
215	Advances in molecular imaging of atherosclerosis and myocardial infarction: shedding new light on in vivo cardiovascular biology. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1397-H1410.	3.2	12
216	Contrast Enhancement Imaging in Coronary Arteries in SLE. JACC: Cardiovascular Imaging, 2012, 5, 962-964.	5.3	12

#	Article	IF	CITATIONS
217	Bone marrow transplantation modulates tissue macrophage phenotype and enhances cardiac recovery after subsequent acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 2016, 90, 120-128.	1.9	12
218	Contrast-enhanced magnetic resonance imaging for the detection of ruptured coronary plaques in patients with acute myocardial infarction. PLoS ONE, 2017, 12, e0188292.	2.5	12
219	Molecular imaging of myocardial infarction with Gadofluorine P – A combined magnetic resonance and mass spectrometry imaging approach. Heliyon, 2018, 4, e00606.	3.2	12
220	3D SASHA myocardial T1 mapping with high accuracy and improved precision. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 281-289.	2.0	12
221	Real-Time Motion Correction in Navigator-Gated Free-Breathing Double-Oblique Submillimeter 3D Right Coronary Artery Magnetic Resonance Angiography. Investigative Radiology, 2002, 37, 632-636.	6.2	11
222	Fast Interactive Real-Time Magnetic Resonance Imaging of Cardiac Masses Using Spiral Gradient Echo and Radial Steady-State Free Precession Sequences. Investigative Radiology, 2003, 38, 288-292.	6.2	11
223	Structural and functional imaging by MRI. Basic Research in Cardiology, 2008, 103, 152-160.	5.9	11
224	T1-weighted MRI for the detection of coronary artery plaque haemorrhage. European Radiology, 2010, 20, 2817-2823.	4.5	11
225	Mid-regional pro-atrial natriuretic peptide as a prognostic marker for all-cause mortality in patients with symptomatic coronary artery disease. Clinical Science, 2012, 123, 601-610.	4.3	11
226	CMRA with 100% navigator efficiency with 3D self navigation and interleaved scanning. Journal of Cardiovascular Magnetic Resonance, 2014, 16, O8.	3.3	11
227	A clinical combined gadobutrol bolus and slow infusion protocol enabling angiography, inversion recovery whole heart, and late gadolinium enhancement imaging in a single study. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 66.	3.3	11
228	Accelerated 3D T ₂ wâ€imaging of the prostate with 1â€millimeter isotropic resolution in less than 3 minutes. Magnetic Resonance in Medicine, 2019, 82, 721-731.	3.0	11
229	Respiratory―and cardiac motionâ€corrected simultaneous wholeâ€heart PET and dual phase coronary MR angiography. Magnetic Resonance in Medicine, 2019, 81, 1671-1684.	3.0	11
230	Utilizing different methods for visualizing susceptibility from a single multi-gradient echo dataset. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2009, 22, 297-308.	2.0	10
231	Molecular Imaging With Targeted Contrast Agents. Topics in Magnetic Resonance Imaging, 2009, 20, 247-259.	1.2	10
232	Local erythropoietin and endothelial progenitor cells improve regional cardiac function in acute myocardial infarction. BMC Cardiovascular Disorders, 2010, 10, 43.	1.7	10
233	Reference regionâ€based pharmacokinetic modeling in quantitative dynamic contractâ€enhanced MRI allows robust treatment monitoring in a rat liver tumor model despite cardiovascular changes. Magnetic Resonance in Medicine, 2011, 65, 229-238.	3.0	10
234	<i>Ex vivo</i> imaging of injured arteries in rabbits using fluorescence-labelled glycoprotein VI-Fc. Platelets, 2012, 23, 1-6.	2.3	10

#	Article	IF	CITATIONS
235	Coronary MR angiography using imageâ€based respiratory motion compensation with inline correction and fixed gating efficiency. Magnetic Resonance in Medicine, 2018, 79, 416-422.	3.0	10
236	Tropoelastin: an in vivo imaging marker of dysfunctional matrix turnover during abdominal aortic dilation. Cardiovascular Research, 2020, 116, 995-1005.	3.8	10
237	3D Wholeâ€heart freeâ€breathing qBOOSTâ€T2 mapping. Magnetic Resonance in Medicine, 2020, 83, 1673-168	73.0	10
238	MRI-Guided Motion-Corrected PET Image Reconstruction for Cardiac PET/MRI. Journal of Nuclear Medicine, 2021, 62, 1768-1774.	5.0	10
239	Coronary Magnetic Resonance Angiography in Chronic Coronary Syndromes. Frontiers in Cardiovascular Medicine, 2021, 8, 682924.	2.4	10
240	High-resolution non-contrast free-breathing coronary cardiovascularÃ,Âmagnetic resonance angiography for detection of coronary artery disease: validation against invasive coronary angiography. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 26.	3.3	10
241	Coronary Magnetic Resonance Angiography. Herz, 2003, 28, 90-98.	1.1	9
242	Evaluation of phaseâ€sensitive versus magnitude reconstructed inversion recovery imaging for the assessment of myocardial infarction in mice with a clinical magnetic resonance scanner. Journal of Magnetic Resonance Imaging, 2012, 36, 1372-1382.	3.4	9
243	In Vivo Molecular Characterization of Abdominal Aortic Aneurysms Using Fibrinâ€5pecific Magnetic Resonance Imaging. Journal of the American Heart Association, 2018, 7, .	3.7	9
244	Mass Spectrometry Imaging of atherosclerosis-affine Gadofluorine following Magnetic Resonance Imaging. Scientific Reports, 2020, 10, 79.	3.3	9
245	Combined Magnetic Resonance Imaging and Photodynamic Therapy Using Polyfunctionalised Nanoparticles Bearing Robust Gadolinium Surface Units. Chemistry - A European Journal, 2020, 26, 4552-4566.	3.3	9
246	Improved segmented modified Look-Locker inversion recovery T1 mapping sequence in mice. PLoS ONE, 2017, 12, e0187621.	2.5	9
247	Inversion Prepared Coronary MR Angiography: Direct Visualization of Coronary Blood Flow. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2005, 177, 173-178.	1.3	8
248	Usefulness of MRI to Demonstrate the Mechanisms of Myocardial Ischemia in Hypertrophic Cardiomyopathy with Myocardial Bridge. Cardiology, 2007, 107, 159-164.	1.4	8
249	Contrastâ€enhanced specific absorption rateâ€efficient 3D cardiac cine with respiratoryâ€ŧriggered radiofrequency gating. Journal of Magnetic Resonance Imaging, 2013, 37, 986-992.	3.4	8
250	Simultaneous 3D wholeâ€heart brightâ€blood and black blood imaging for cardiovascular anatomy and wall assessment with interleaved T 2 prepâ€lR. Magnetic Resonance in Medicine, 2019, 82, 312-325.	3.0	8
251	Coronary magnetic resonance imaging: current state-of-the-art. Coronary Artery Disease, 2005, 16, 345-353.	0.7	7
252	Intraindividual Comparison of 3D Coronary MR Angiography and Coronary CT Angiography. Academic Radiology, 2007, 14, 910-916.	2.5	7

#	Article	IF	CITATIONS
253	Flow Targeted 3D Steady-State Free-Precession Coronary MR Angiography. Investigative Radiology, 2009, 44, 757-762.	6.2	7
254	Right Atrial Scar Detection after Catheter Ablation. Academic Radiology, 2011, 18, 488-494.	2.5	7
255	3D Cartesian fast interrupted steadyâ€state (FISS) imaging. Magnetic Resonance in Medicine, 2019, 82, 1617-1630.	3.0	7
256	Self-supervised learning-based diffeomorphic non-rigid motion estimation for fast motion-compensated coronary MR angiography. Magnetic Resonance Imaging, 2022, 85, 10-18.	1.8	7
257	Whole-heart non-rigid motion corrected coronary MRA with autofocus virtual 3D iNAV. Magnetic Resonance Imaging, 2022, 87, 169-176.	1.8	7
258	Coronary Plaque Characterization by T1-Weighted Cardiac Magnetic Resonance. JACC: Cardiovascular Imaging, 2009, 2, 729-730.	5.3	6
259	Crossâ€sectional and Inâ€plane coronary vessel wall imaging using a local inversion prepulse and spiral readâ€out: A comparison between 1.5 and 3 tesla. Journal of Magnetic Resonance Imaging, 2012, 35, 969-975.	3.4	6
260	Accelerating threeâ€dimensional molecular cardiovascular MR imaging using compressed sensing. Journal of Magnetic Resonance Imaging, 2012, 36, 1362-1371.	3.4	6
261	Wholeâ€heart T 1 mapping using a 2D fat image navigator for respiratory motion compensation. Magnetic Resonance in Medicine, 2020, 83, 178-187.	3.0	6
262	Title is missing!. Investigative Radiology, 2003, 38, 263-268.	6.2	5
263	Radiofrequency ablation of right ventricular outflow tract tachycardia using a magnetic resonance 3D model for interactive catheter guidance. Clinical Research in Cardiology, 2006, 95, 610-613.	3.3	5
264	Relation of Left Ventricular Function, Mass, and Volume to NT-proBNP in Type 1 Diabetic Patients. Diabetes Care, 2008, 31, 968-970.	8.6	5
265	Cardiovascular MRI in small animals. Expert Review of Cardiovascular Therapy, 2010, 8, 35-47.	1.5	5
266	Accelerated aortic imaging using small field of view imaging and electrocardiogramâ€ŧriggered quadruple inversion recovery magnetization preparation. Journal of Magnetic Resonance Imaging, 2011, 34, 1176-1183.	3.4	5
267	Contrast-enhanced cardiovascular magnetic resonance imaging of coronary vessel wall: state of art. Expert Review of Cardiovascular Therapy, 2014, 12, 255-263.	1.5	5
268	The importance of qualitative and quantitative regional wall motion abnormality assessment at rest in pediatric coronary allograft vasculopathy. Pediatric Transplantation, 2018, 22, e13208.	1.0	5
269	Noninvasive Imaging of Endothelial Damage in Patients With Different HbA1c Levels: A Proof-of-Concept Study. Diabetes, 2019, 68, 387-394.	0.6	5
270	Visualization of elastin using cardiac magnetic resonance imaging after myocardial infarction as inflammatory response. Scientific Reports, 2021, 11, 11004.	3.3	5

#	Article	IF	CITATIONS
271	Non-rigid motion-corrected free-breathing 3D myocardial Dixon LGE imaging in a clinical setting. European Radiology, 2022, 32, 4340-4351.	4.5	5
272	Platelets in Cardiovascular Imaging. Current Vascular Pharmacology, 2012, 10, 619-625.	1.7	4
273	Molecular Cardiovascular Magnetic Resonance: Current Status and Future Prospects. Current Cardiology Reports, 2016, 18, 47.	2.9	4
274	Influence of acquired obesity on coronary vessel wall late gadolinium enhancement in discordant monozygote twins. European Radiology, 2017, 27, 4612-4618.	4.5	4
275	Improved coronary magnetic resonance angiography using gadobenate dimeglumine in pediatric congenital heart disease. Magnetic Resonance Imaging, 2018, 49, 47-54.	1.8	4
276	Dual-phase whole-heart imaging using image navigation in congenital heart disease. BMC Medical Imaging, 2018, 18, 36.	2.7	4
277	Metallostar Assemblies Based on Dithiocarbamates for Use as MRI Contrast Agents. Inorganic Chemistry, 2020, 59, 10813-10823.	4.0	4
278	Accelerated high-resolution free-breathing 3D whole-heart T2-prepared black-blood and bright-blood cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2020, 22, 88.	3.3	4
279	Imaging the Extracellular Matrix in Prevalent Cardiovascular Diseases. Applied Sciences (Switzerland), 2020, 10, 4001.	2.5	4
280	Contrast-free high-resolution 3D magnetization transfer imaging for simultaneous myocardial scar and cardiac vein visualization. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2020, 33, 627-640.	2.0	4
281	Faster 3D saturation-recovery based myocardial T1 mapping using a reduced number of saturation points and denoising. PLoS ONE, 2020, 15, e0221071.	2.5	4
282	3D whole-heart grey-blood late gadolinium enhancement cardiovascular magnetic resonance imaging. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 62.	3.3	4
283	Synergistic multi-contrast cardiac magnetic resonance image reconstruction. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200197.	3.4	4
284	Evaluation of accelerated motion-compensated 3d water/fat late gadolinium enhanced MR for atrial wall imaging. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2021, 34, 877-887.	2.0	4
285	Efficient non-contrast enhanced 3D Cartesian cardiovascular magnetic resonance angiography of the thoracic aorta in 3Âmin. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 5.	3.3	4
286	Accelerating 3D MTC-BOOST in patients with congenital heart disease using a joint multi-scale variational neural network reconstruction. Magnetic Resonance Imaging, 2022, 92, 120-132.	1.8	4
287	Title is missing!. Investigative Radiology, 2003, 38, 288-292.	6.2	3
288	Flow-Targeted Inversion-Prepared b-TFE Coronary MR Angiography: Initial Results in Patients. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2009, 181, 1050-1055.	1.3	3

#	Article	IF	CITATIONS
289	Arterial spin labeling angiography using a triple inversion recovery prepulse. Magnetic Resonance in Medicine, 2012, 67, 477-483.	3.0	3
290	Left-sided Pulmonary Venous Pathway Obstruction after Mustard Operation. Congenital Heart Disease, 2013, 8, 66-70.	0.2	3
291	2D phase contrast blood flow velocity measurements of the thoracic vasculature: comparison of the effect of gadofosveset trisodium and gadopentetate dimeglumine. International Journal of Cardiovascular Imaging, 2015, 31, 409-416.	1.5	3
292	Effect of Doxycycline on Survival in Abdominal Aortic Aneurysms in a Mouse Model. Contrast Media and Molecular Imaging, 2021, 2021, 1-9.	0.8	3
293	Cardiovascular magnetic resonance imaging of coronary atherothrombosis. Journal of Nuclear Cardiology, 2005, 12, 337-344.	2.1	2
294	Pitfalls in Coronary Magnetic Resonance Angiography. Circulation, 2005, 111, e94-6.	1.6	2
295	Subacute Thrombotic Occlusion and Spontaneous Recanalization of the Right Coronary Artery After Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction Visualized by Coronary Angiography and Cardiac Magnetic Resonance Imaging. Circulation, 2007, 116, e78-80.	1.6	2
296	High Spatial Resolution and High Contrast Visualization of Brain Arteries and Veins: Impact of Blood Pool Contrast Agent and Water-Selective Excitation Imaging at 3T. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2010, 182, 1097-1104.	1.3	2
297	Coronary Magnetic Resonance Angiography in Heterotopic Heart Transplant Recipient. Circulation, 2014, 129, 1453-1455.	1.6	2
298	Combined coronary lumen and vessel wall magnetic resonance imaging with i-T2prep: influence of nitroglycerin. International Journal of Cardiovascular Imaging, 2015, 31, 77-82.	1.5	2
299	Atherosclerotic Plaque Imaging. , 2018, , 261-300.		2
300	Contrast-Enhanced Magnetic Resonance Angiography Using a Novel Elastin-Specific Molecular Probe in an Experimental Animal Model. Contrast Media and Molecular Imaging, 2018, 2018, 1-9.	0.8	2
301	Molecular Imaging in Ischemic Heart Disease. Current Cardiovascular Imaging Reports, 2019, 12, 31.	0.6	2
302	Molecular MR-Imaging for Noninvasive Quantification of the Anti-Inflammatory Effect of Targeting Interleukin-11² in a Mouse Model of Aortic Aneurysm. Molecular Imaging, 2020, 19, 153601212096187.	1.4	2
303	Comprehensive multimodality characterization of hemodynamically significant and non-significant coronary lesions using invasive and noninvasive measures. PLoS ONE, 2020, 15, e0228292.	2.5	2
304	Assessment of Albumin ECM Accumulation and Inflammation as Novel In Vivo Diagnostic Targets for Multi-Target MR Imaging. Biology, 2021, 10, 964.	2.8	2
305	Green Fluorescent Protein (GFP) Color Reporter Gene Visualizes Parvovirus B19 Non-Structural Segment 1 (NS1) Transfected Endothelial Modification. PLoS ONE, 2012, 7, e33602.	2.5	2
306	Imaging of Dysfunctional Elastogenesis in Atherosclerosis Using an Improved Gadolinium-Based Tetrameric MRI Probe Targeted to Tropoelastin. Journal of Medicinal Chemistry, 2021, 64, 15250-15261.	6.4	2

#	Article	IF	CITATIONS
307	Innovations in Cardiovascular MR and PET-MR Imaging. , 2022, , 265-309.		2
308	MRI of atherosclerosis: from mouse to man. Imaging in Medicine, 2012, 4, 41-58.	0.0	1
309	Current Development of Molecular Coronary Plaque Imaging using Magnetic Resonance Imaging towards Clinical Application. Current Cardiovascular Imaging Reports, 2014, 7, 1.	0.6	1
310	Coronary MR Imaging. JACC: Cardiovascular Imaging, 2015, 8, 1153-1155.	5.3	1
311	Quantitative magnetization transfer imaging for nonâ€contrast enhanced detection of myocardial fibrosis. Magnetic Resonance in Medicine, 2021, 85, 2069-2083.	3.0	1
312	Temperature quantification using the proton frequency shift technique: In vitro and in vivo validation in an open 0.5 tesla interventional MR scanner during RF ablation. Journal of Magnetic Resonance Imaging, 2001, 13, 437-444.	3.4	1
313	Coronary Artery and Vein Imaging. , 2010, , 284-298.		1
314	Accelerated 4D Respiratory Motion-Resolved Cardiac MRI with a Model-Based Variational Network. Lecture Notes in Computer Science, 2020, , 427-435.	1.3	1
315	Magnetization Transfer <scp>BOOST</scp> Noncontrast Angiography Improves Pulmonary Vein Imaging in Adults With Congenital Heart Disease. Journal of Magnetic Resonance Imaging, 0, , .	3.4	1
316	MRI of subclinical coronary atherosclerosis. Current Cardiovascular Imaging Reports, 2009, 2, 95-105.	0.6	0
317	Detection of intracoronary thrombus by magnetic resonance imaging in patients with acute coronary syndrome. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	3.3	0
318	Contrast enhanced magnetic resonance imaging of culprit lesions in patients with acute coronary syndrome. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	3.3	0
319	First pass vasodilator-stress myocardial perfusion CMR in mice on a whole-body 3Tesla scanner: validation against microspheres. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .	3.3	0
320	Molecular MRI of Atherosclerosis Burden. Current Cardiovascular Imaging Reports, 2012, 5, 26-35.	0.6	0
321	Coronary and Perfusion Imaging with Cardiovascular Magnetic Resonance: Current State of the Art. , 2016, , 1-17.		0
322	Highly efficient motion-corrected simultaneous cardiac PET-MR imaging. , 2016, , .		0
323	CATCHing the High-Risk Coronary Plaques by Magnetic Resonance Imaging. JACC: Cardiovascular Imaging, 2017, 10, 649-651.	5.3	0
324	Cardiac MR Angiography. , 2018, , 399-432.		0

#	Article	IF	CITATIONS
325	P18â€∱PRAVASTATIN AND MINOCYCLINE TREATMENT AFFECTS VESSEL WALL REMODELING IN A MURINE MODE OF VASCULAR INJURY. Cardiovascular Research, 2018, 114, S6-S7.	EL _{3.8}	0
326	P52 ESTIMATING CENTRAL BLOOD PRESSURE FROM MRI DATA USING REDUCED-ORDER COMPUTATIONAL MODELS. Artery Research, 2018, 24, 93.	0.6	0
327	Atherosclerotic Plaque Imaging. Contemporary Cardiology, 2019, , 229-248.	0.1	0
328	Technical Principles of MRA. , 2002, , 515-526.		0
329	Magnetic resonance imaging of atherosclerosis: classical and molecular imaging. , 2004, , 243-255.		0
330	Cardiovascular Magnetic Resonance Imaging of Atherothrombosis. , 2008, , 631-648.		0
331	Atherosclerotic Plaque Imaging. , 2010, , 351-361.		0
332	Technical Advances and Clinical Perspectives in Coronary MR Imaging. , 2018, , 321-344.		0
333	Atherosclerotic Plaque Imaging. , 2019, , 343-351.e3.		0
334	Magnetic Resonance Imaging of Coronary Arteries. , 2019, , 291-299.e5.		0
335	Specialized Mapping Methods in the Heart. Advances in Magnetic Resonance Technology and Applications, 2020, 1, 91-121.	0.1	Ο