
Peter O Bauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8527070/publications.pdf Version: 2024-02-01

DETED O RALIED

#	Article	IF	CITATIONS
1	Noninsect-Based Diet Leads to Structural and Functional Changes of Acidic Chitinase in Carnivora. Molecular Biology and Evolution, 2022, 39, .	8.9	5
2	Crab-Eating Monkey Acidic Chitinase (CHIA) Efficiently Degrades Chitin and Chitosan under Acidic and High-Temperature Conditions. Molecules, 2022, 27, 409.	3.8	1
3	Robust chitinolytic activity of crab-eating monkey (Macaca fascicularis) acidic chitinase under a broad pH and temperature range. Scientific Reports, 2021, 11, 15470.	3.3	6
4	Mouse Acidic Chitinase Effectively Degrades Random-Type Chitosan to Chitooligosaccharides of Variable Lengths under Stomach and Lung Tissue pH Conditions. Molecules, 2021, 26, 6706.	3.8	3
5	Comparative functional analysis between human and mouse chitotriosidase: Substitution at amino acid 218 modulates the chitinolytic and transglycosylation activity. International Journal of Biological Macromolecules, 2020, 164, 2895-2902.	7.5	2
6	Quantification of chitooligosaccharides by FACE method: Determination of combinatory effects of mouse chitinases. MethodsX, 2020, 7, 100881.	1.6	3
7	Residues of acidic chitinase cause chitinolytic activity degrading chitosan in porcine pepsin preparations. Scientific Reports, 2019, 9, 15609.	3.3	15
8	Neurons Induced From Fibroblasts of c9ALS/FTD Patients Reproduce the Pathology Seen in the Central Nervous System. Frontiers in Neuroscience, 2019, 13, 935.	2.8	2
9	High expression of acidic chitinase and chitin digestibility in the stomach of common marmoset (Callithrix jacchus), an insectivorous nonhuman primate. Scientific Reports, 2019, 9, 159.	3.3	18
10	Direct comparison of chitinolytic properties and determination of combinatory effects of mouse chitotriosidase and acidic mammalian chitinase. International Journal of Biological Macromolecules, 2019, 134, 882-890.	7.5	9
11	Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Scientific Reports, 2018, 8, 1461.	3.3	58
12	Chitinase mRNA Levels Determined by QPCR in Crab-Eating Monkey (Macaca fascicularis) Tissues: Species-Specific Expression of Acidic Mammalian Chitinase and Chitotriosidase. Genes, 2018, 9, 244.	2.4	6
13	Acidic Chitinase-Chitin Complex Is Dissociated in a Competitive Manner by Acetic Acid: Purification of Natural Enzyme for Supplementation Purposes. International Journal of Molecular Sciences, 2018, 19, 362.	4.1	12
14	Improved fluorescent labeling of chitin oligomers: Chitinolytic properties of acidic mammalian chitinase under somatic tissue pH conditions. Carbohydrate Polymers, 2017, 164, 145-153.	10.2	24
15	Protease resistance of porcine acidic mammalian chitinase under gastrointestinal conditions implies that chitin-containing organisms can be sustainable dietary resources. Scientific Reports, 2017, 7, 12963.	3.3	29
16	Gastric and intestinal proteases resistance of chicken acidic chitinase nominates chitin-containing organisms for alternative whole edible diets for poultry. Scientific Reports, 2017, 7, 6662.	3.3	51
17	Mouse acidic mammalian chitinase exhibits transglycosylation activity at somatic tissue pH. FEBS Letters, 2017, 591, 3310-3318.	2.8	9
18	Functional Properties of Mouse Chitotriosidase Expressed in the Periplasmic Space of Escherichia coli. PLoS ONE, 2016, 11, e0164367.	2.5	10

Peter O Bauer

#	Article	IF	CITATIONS
19	Loss and Gain of Human Acidic Mammalian Chitinase Activity by Nonsynonymous SNPs. Molecular Biology and Evolution, 2016, 33, 3183-3193.	8.9	35
20	Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system. Scientific Reports, 2016, 6, 37756.	3.3	58
21	LRRK2 contributes to monocyte dysregulation in Parkinson's disease. Acta Neuropathologica Communications, 2016, 4, 123.	5.2	29
22	The extreme N-terminus of TDP-43 mediates the cytoplasmic aggregation of TDP-43 and associated toxicity in vivo. Brain Research, 2016, 1647, 57-64.	2.2	44
23	Methylation of C9orf72 expansion reduces RNA foci formation and dipeptide-repeat proteins expression in cells. Neuroscience Letters, 2016, 612, 204-209.	2.1	21
24	(Pathoâ€)physiological relevance of <scp>PINK</scp> 1â€dependent ubiquitin phosphorylation. EMBO Reports, 2015, 16, 1114-1130.	4.5	147
25	Functional Properties of the Catalytic Domain of Mouse Acidic Mammalian Chitinase Expressed in Escherichia coli. International Journal of Molecular Sciences, 2015, 16, 4028-4042.	4.1	22
26	Quantitative Real-Time PCR Analysis of YKL-40 and Its Comparison with Mammalian Chitinase mRNAs in Normal Human Tissues Using a Single Standard DNA. International Journal of Molecular Sciences, 2015, 16, 9922-9935.	4.1	9
27	<i>C9ORF72</i> repeat expansions in mice cause TDP-43 pathology, neuronal loss, and behavioral deficits. Science, 2015, 348, 1151-1154.	12.6	332
28	A novel form of ciliopathy underlies hyperphagia and obesity in Ankrd26 knockout mice. Brain Structure and Function, 2015, 220, 1511-1528.	2.3	31
29	Large-Scale RNA Interference Screening in Mammalian Cells Identifies Novel Regulators of Mutant Huntingtin Aggregation. PLoS ONE, 2014, 9, e93891.	2.5	10
30	Targeted manipulation of the sortilin–progranulin axis rescues progranulin haploinsufficiency. Human Molecular Genetics, 2014, 23, 1467-1478.	2.9	96
31	Chaperone-Mediated Autophagy and Degradation of Mutant Huntingtin Protein. , 2014, , 369-382.		0
32	Characterization of DNA hypermethylation in the cerebellum of c9FTD/ALS patients. Brain Research, 2014, 1584, 15-21.	2.2	70
33	Large normal alleles and SCA2 prevalence: lessons from a nationwide study and analysis of the literature. Clinical Genetics, 2014, 86, 96-98.	2.0	5
34	Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)-Associated Defects in c9FTD/ALS. Neuron, 2014, 83, 1043-1050.	8.1	289
35	Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions (Xpansize-72): a cross-sectional cohort study. Lancet Neurology, The, 2013, 12, 978-988.	10.2	232
36	2-Aminoethyl diphenylborinate (2-APB) analogues: Regulation of Ca2+ signaling. Biochemical and Biophysical Research Communications, 2013, 441, 286-290.	2.1	23

Peter O Bauer

#	Article	IF	CITATIONS
37	Genome-wide associations of signaling pathways in glioblastoma multiforme. BMC Medical Genomics, 2013, 6, 11.	1.5	3
38	Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathologica, 2013, 126, 895-905.	7.7	263
39	Important miRs of Pathways in Different Tumor Types. PLoS Computational Biology, 2013, 9, e1002883.	3.2	2
40	De Novo Mutations in Ataxin-2 Gene and ALS Risk. PLoS ONE, 2013, 8, e70560.	2.5	28
41	Gliomagenesis Arising from Pten- and Ink4a/Arf-Deficient Neural Progenitor Cells Is Mediated by the p53-Fbxw7/Cdc4 Pathway, Which Controls c-Myc. Cancer Research, 2012, 72, 6065-6075.	0.9	32
42	Involvement of microRNA families in cancer. Nucleic Acids Research, 2012, 40, 8219-8226.	14.5	18
43	ROCK-phosphorylated vimentin modifies mutant huntingtin aggregation via sequestration of IRBIT. Molecular Neurodegeneration, 2012, 7, 43.	10.8	31
44	Epigenetics DNA methylation in the core ataxin-2 gene promoter: novel physiological and pathological implications. Human Genetics, 2012, 131, 625-638.	3.8	45
45	Genetic ablation and chemical inhibition of IP3R1 reduce mutant huntingtin aggregation. Biochemical and Biophysical Research Communications, 2011, 416, 13-17.	2.1	21
46	Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nature Biotechnology, 2010, 28, 256-263.	17.5	215
47	Inhibition of Rho Kinases Enhances the Degradation of Mutant Huntingtin. Journal of Biological Chemistry, 2009, 284, 13153-13164.	3.4	87
48	Enhanced degradation of mutant huntingtin by rho kinase inhibition is mediated through activation of proteasome and macroautophagy. Autophagy, 2009, 5, 747-748.	9.1	28
49	The pathogenic mechanisms of polyglutamine diseases and current therapeutic strategies. Journal of Neurochemistry, 2009, 110, 1737-1765.	3.9	163
50	RNA-binding Protein TLS Is a Major Nuclear Aggregate-interacting Protein in Huntingtin Exon 1 with Expanded Polyglutamine-expressing Cells. Journal of Biological Chemistry, 2008, 283, 6489-6500.	3.4	109
51	Blocking acid-sensing ion channel 1 alleviates Huntington's disease pathology via an ubiquitin-proteasome system-dependent mechanism. Human Molecular Genetics, 2008, 17, 3223-3235.	2.9	117
52	Expanded polyglutamines impair synaptic transmission and ubiquitin-proteasome system in Caenorhabditis elegans. Journal of Neurochemistry, 2006, 98, 576-587.	3.9	53
53	Absence of spinocerebellar ataxia type 3/Machado-Joseph disease within ataxic patients in the Czech population. European Journal of Neurology, 2005, 12, 851-857.	3.3	16
54	Fluorescent Multiplex PCR: Fast Method for Autosomal Dominant Spinocerebellar Ataxias Screening. Russian Journal of Genetics, 2005, 41, 675-682.	0.6	3

#	Article	IF	CITATIONS
55	Genotype/phenotype correlation in a SCA1 family: anticipation without CAG expansion. Journal of Applied Genetics, 2005, 46, 325-8.	1.9	5
56	Large de novo expansion of CAG repeats in patient with sporadic spinocerebellar ataxia type 7. Journal of Neurology, 2004, 251, 1023-4.	3.6	12
57	Can ataxin-2 be down-regulated by allele-specific de novo DNA methylation in SCA2 patients?. Medical Hypotheses, 2004, 63, 1018-1023.	1.5	8