Ju-hsiang Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8526759/publications.pdf

Version: 2024-02-01

all docs

186265 254184 4,229 43 28 43 citations g-index h-index papers 46 46 46 7763 docs citations times ranked citing authors

#	Article	IF	Citations
1	Organometal halide perovskite solar cells: degradation and stability. Energy and Environmental Science, 2016, 9, 323-356.	30.8	1,457
2	Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. Journal of Power Sources, 2015, 278, 375-381.	7.8	249
3	The P2-Na2/3Co2/3Mn1/3O2 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Transactions, 2011, 40, 9306.	3.3	225
4	Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale, 2018, 10, 6125-6138.	5.6	215
5	Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 6638.	6.7	174
6	Nucleation and Growth Mechanism of Lithium Metal Electroplating. Journal of the American Chemical Society, 2019, 141, 18612-18623.	13.7	144
7	Oriented growth of large-scale nickel sulfide nanowire arrays via a general solution route for lithium-ion battery cathode applications. Journal of Materials Chemistry, 2009, 19, 7277.	6.7	132
8	Visualization of Lithium Plating and Stripping via <i>in Operando</i> Transmission X-ray Microscopy. Journal of Physical Chemistry C, 2017, 121, 7761-7766.	3.1	123
9	Electronic, Structural, and Electrochemical Properties of LiNi _{<i>x</i><isv< i=""></isv<>} O ₄ (0) Tj 23. 2832-2841.	ЕТОЯ 1 1 (0.784314 rg 122
10	Revealing Nanoscale Solid–Solid Interfacial Phenomena for Long-Life and High-Energy All-Solid-State Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43138-43145.	8.0	122
11	O3–Na _x Mn _{1/3} Fe _{2/3} O ₂ as a positive electrode material for Na-ion batteries: structural evolutions and redox mechanisms upon Na ⁺ (de)intercalation. Journal of Materials Chemistry A, 2015, 3, 10976-10989.	10.3	113
12	Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process. ACS Applied Energy Materials, 2019, 2, 6542-6550.	5.1	96
13	Simultaneous Reduction of Co ³⁺ and Mn ⁴⁺ in P2-Na _{2/3} Co _{2/3} Mn _{1/3} O ₂ As Evidenced by X-ray Absorption Spectroscopy during Electrochemical Sodium Intercalation. Chemistry of Materials, 2014, 26. 1219-1225.	6.7	94
14	Understanding the Role of Ni in Stabilizing the Lithium-Rich High-Capacity Cathode Material Li[NixLi(1–2x)/3Mn(2–x)/3]O2(0 â‰xâ‰x0.5). Chemistry of Materials, 2014, 26, 6919-6927.	6.7	72
15	Improved Interfacial Properties of MCMB Electrode by 1-(Trimethylsilyl)imidazole as New Electrolyte Additive To Suppress LiPF ₆ Decomposition. ACS Applied Materials & Decomposition. ACS Applied Materials	8.0	72
16	Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries. Journal of Power Sources, 2017, 353, 298-311.	7.8	71
17	Capacity retention of lithium sulfur batteries enhanced with nano-sized TiO ₂ -embedded polyethylene oxide. Journal of Materials Chemistry A, 2017, 5, 6708-6715.	10.3	66
18	Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries. Journal of Power Sources, 2016, 324, 239-252.	7.8	57

#	Article	IF	CITATIONS
19	Preparation of nano-sized Cu from a rod-like CuFe2O4: Suitable for high performance catalytic applications. Applied Catalysis B: Environmental, 2011, 106, 650-656.	20.2	53
20	Controlled Synthesis of CdSe Quantum Dots by a Microwaveâ€Enhanced Process: A Green Approach for Mass Production. Chemistry - A European Journal, 2011, 17, 5737-5744.	3.3	44
21	Advanced nanoelectrocatalyst for methanol oxidation and oxygen reduction reaction, fabricated as one-dimensional pt nanowires on nanostructured robust Ti0.7Ru0.3O2 support. Nano Energy, 2012, 1, 687-695.	16.0	40
22	Stabilizing Nanosized Si Anodes with the Synergetic Usage of Atomic Layer Deposition and Electrolyte Additives for Li-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13801-13807.	8.0	39
23	Revealing the effect of polyethylenimine on zinc metal anodes in alkaline electrolyte solution for zinc–air batteries: mechanism studies of dendrite suppression and corrosion inhibition. Journal of Materials Chemistry A, 2020, 8, 20637-20649.	10.3	39
24	An unexpected large capacity of ultrafine manganese oxide as a sodium-ion battery anode. Nanoscale, 2015, 7, 20075-20081.	5.6	38
25	Revealing the mitigation of intrinsic structure transformation and oxygen evolution in a layered Li1.2Ni0.2Mn0.6O2 cathode using restricted charging protocols. Journal of Power Sources, 2017, 359, 539-548.	7.8	38
26	Mechanistic Basis of Enhanced Capacity Retention Found with Novel Sulfate-Based Additive in High-Voltage Li-Ion Batteries. Journal of Physical Chemistry C, 2013, 117, 22619-22626.	3.1	37
27	Origin of shuttle-free sulfurized polyacrylonitrile in lithium-sulfur batteries. Journal of Power Sources, 2021, 492, 229508.	7.8	33
28	Dualâ€Confined Sulfur in Hybrid Nanostructured Materials for Enhancement of Lithiumâ€Sulfur Battery Cathode Capacity Retention. ChemElectroChem, 2017, 4, 636-647.	3.4	31
29	Designed Synergetic Effect of Electrolyte Additives to Improve Interfacial Chemistry of MCMB Electrode in Propylene Carbonate-Based Electrolyte for Enhanced Low and Room Temperature Performance. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25252-25262.	8.0	31
30	Effect of Mg doping on the local structure of LiMgyCo1â^yO2 cathode material investigated by X-ray absorption spectroscopy. Journal of Power Sources, 2014, 252, 292-297.	7.8	29
31	Resilient Yolk–Shell Silicon–Reduced Graphene Oxide/Amorphous Carbon Anode Material from a Synergistic Dualâ€Coating Process for Lithiumâ€lon Batteries. ChemElectroChem, 2016, 3, 1446-1454.	3.4	25
32	An investigation of the salt dissociation effects on solid electrolyte interface (SEI) formation using linear carbonate-based electrolytes in lithium ion batteries. Solid State Ionics, 2010, 180, 1660-1666.	2.7	19
33	Hierarchical Copperâ€Decorated Nickel Nanocatalysts Supported on La ₂ O ₃ for Lowâ€Temperature Steam Reforming of Ethanol. ChemSusChem, 2014, 7, 570-576.	6.8	18
34	DFT+U Calculations and XAS Study: Further Confirmation of the Presence of CoO5 Square-Based Pyramids with IS-Co3+ in Li-Overstoichiometric LiCoO2. Journal of Physical Chemistry C, 2013, 117, 26493-26500.	3.1	17
35	Enhancement of Electrochemical Properties by Freeze-dried Graphene Oxide via Glucose-assisted Reduction. Electrochimica Acta, 2016, 197, 146-151.	5.2	16
36	Surface Area of Lithium-Metal Electrodes Measured by Argon Adsorption. Journal of the Electrochemical Society, 2019, 166, A3250-A3253.	2.9	16

#	Article	lF	CITATIONS
37	Transport Properties of Nanoâ€sized TiO ₂ â€based Composite Polymer Electrolyte Prepared by a Green Method. Journal of the Chinese Chemical Society, 2012, 59, 1250-1257.	1.4	12
38	Facile synthesis of SnO2-embedded carbon nanomaterials via glucose-mediated oxidation of Sn particles. Journal of Materials Chemistry, 2011, 21, 10705.	6.7	11
39	The network gel polymer electrolyte based on poly(acrylate-co-imide) and its transport properties in lithium ion batteries. Journal of Solid State Electrochemistry, 2009, 13, 1425-1431.	2.5	10
40	Combined effects of ceramic filler size and ethylene oxide length on the ionic transport properties of solid polymer electrolyte derivatives of PEGMEMA. Journal of Solid State Electrochemistry, 2012, 16, 157-163.	2.5	10
41	Identification of the physical origin behind disorder, heterogeneity, and reconstruction and their correlation with the photoluminescence lifetime in hybrid perovskite thin films. Journal of Materials Chemistry A, 2017, 5, 21002-21015.	10.3	10
42	Defect-free graphene metal oxide composites: formed by lithium mediated exfoliation of graphite. Journal of Materials Chemistry, 2012, 22, 14722.	6.7	8
43	Scalable Synthesis of Micron Size Crystals of CH 3 NH 3 PbI 3 at Room Temperature in Acetonitrile via Rapid Reactive Crystallization. ChemistrySelect, 2020, 5, 3266-3271.	1.5	1