Donal MacGrogan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8525942/publications.pdf

Version: 2024-02-01

42 papers

4,784 citations

172386 29 h-index 289141 40 g-index

45 all docs

45 docs citations

45 times ranked

7759 citing authors

#	Article	IF	CITATIONS
1	Heterotopic ossification in mice overexpressing Bmp2 in Tie2+ lineages. Cell Death and Disease, 2021, 12, 729.	2.7	8
2	DACH1-Driven Arterialization: Angiogenic Therapy for Ischemic Heart Disease?. Circulation Research, 2021, 129, 717-719.	2.0	2
3	Fibrous Caps in Atherosclerosis Form by Notch-Dependent Mechanisms Common to Arterial Media Development. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e427-e439.	1.1	18
4	Identification of a peripheral blood gene signature predicting aortic valve calcification. Physiological Genomics, 2020, 52, 563-574.	1.0	11
5	Coronary arterial development is regulated by a Dll4-Jag1-EphrinB2 signaling cascade. ELife, 2019, 8, .	2.8	27
6	Notch and interacting signalling pathways in cardiac development, disease, and regeneration. Nature Reviews Cardiology, 2018, 15, 685-704.	6.1	173
7	A novel source of arterial valve cells linked to bicuspid aortic valve without raphe in mice. ELife, 2018, 7, .	2.8	979
8	Sequential Ligand-Dependent Notch Signaling Activation Regulates Valve Primordium Formation and Morphogenesis. Circulation Research, 2016, 118, 1480-1497.	2.0	85
9	Endothelial Jag1-RBPJ signalling promotes inflammatory leucocyte recruitment and atherosclerosis. Cardiovascular Research, 2016, 112, 568-580.	1.8	49
10	Endocardial Notch Signaling in Cardiac Development and Disease. Circulation Research, 2016, 118, e1-e18.	2.0	179
11	Genetic and functional genomics approaches targeting the Notch pathway in cardiac development and congenital heart disease. Briefings in Functional Genomics, 2014, 13, 15-27.	1.3	10
12	How to Make a Heart Valve: From Embryonic Development to Bioengineering of Living Valve Substitutes. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a013912-a013912.	2.9	63
13	Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nature Medicine, 2013, 19, 193-201.	15.2	296
14	Notch signaling in cardiac valve development and disease. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 449-459.	1.6	63
15	Diet-Induced Aortic Valve Disease in Mice Haploinsufficient for the Notch Pathway Effector RBPJK/CSL. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1580-1588.	1.1	83
16	Differential Notch Signaling in the Epicardium Is Required for Cardiac Inflow Development and Coronary Vessel Morphogenesis. Circulation Research, 2011, 108, 824-836.	2.0	149
17	Notch Signaling in Cardiac Development and Disease. Current Topics in Developmental Biology, 2010, 92, 333-365.	1.0	74
18	Histone H4 lysine 20 monomethylation promotes transcriptional repression by L3MBTL1. Oncogene, 2008, 27, 4293-4304.	2.6	137

#	Article	IF	CITATIONS
19	Neuronal SIRT1 Activation as a Novel Mechanism Underlying the Prevention of Alzheimer Disease Amyloid Neuropathology by Calorie Restriction*. Journal of Biological Chemistry, 2006, 281, 21745-21754.	1.6	567
20	A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neuroscience, 2006, 7, 29.	0.8	241
21	Caloric Intake and Alzheimer's Disease. , 2006, 35, 159-175.		40
22	Structural integrity and expression of the L3MBTL gene in normal and malignant hematopoietic cells. Genes Chromosomes and Cancer, 2004, 41, 203-213.	1.5	37
23	Identification of Candidate Oncogenes in Acute Megakaryoblastic Leukemias with Gain of Chromosome 19 Blood, 2004, 104, 2023-2023.	0.6	0
24	Malignant Brain Tumor Repeats. Structure, 2003, 11, 775-789.	1.6	61
25	De novo erythroleukemia chromosome features include multiple rearrangements, with special involvement of chromosomes 11 and 19. Genes Chromosomes and Cancer, 2003, 36, 406-412.	1.5	27
26	The Human L(3)MBT Polycomb Group Protein Is a Transcriptional Repressor and Interacts Physically and Functionally with TEL (ETV6). Journal of Biological Chemistry, 2003, 278, 15412-15420.	1.6	102
27	Induction of C/EBPα activity alters gene expression and differentiation of human CD34+ cells. Blood, 2003, 101, 2206-2214.	0.6	76
28	Chromosome 19 abnormalities are commonly seen in AML, M7. Blood, 2002, 100, 3838-3838.	0.6	20
29	Cytogenetic characterization reveals that the SAM-1 erythroid cell line is derived from K-562 cells. Blood, 2002, 100, 3435-3435.	0.6	2
30	Frequent gain of chromosome 19 in megakaryoblastic leukemias detected by comparative genomic hybridization. Genes Chromosomes and Cancer, 2001, 32, 285-293.	1.5	29
31	Identification of candidate genes on chromosome band 20q12 by physical mapping of translocation breakpoints found in myeloid leukemia cell lines. Oncogene, 2001, 20, 4150-4160.	2.6	35
32	Comparative mutational analysis of DPC4 (Smad4) in prostatic and colorectal carcinomas. Oncogene, 1997, 15, 1111-1114.	2.6	117
33	Tumour suppressor genes in prostate cancer. Seminars in Cancer Biology, 1997, 8, 11-19.	4.3	51
34	Physical Mapping of Chromosome 8p22 Markers and Their Homozygous Deletion in a Metastatic Prostate Cancer. Genomics, 1996, 35, 46-54.	1.3	104
35	Structure and Methylation-Associated Silencing of a Gene within a Homozygously Deleted Region of Human Chromosome Band 8p22. Genomics, 1996, 35, 55-65.	1.3	114
36	Loss of chromosome arm 8p loci in prostate cancer: Mapping by quantitative allelic imbalance. Genes Chromosomes and Cancer, 1994, 10, 151-159.	1.5	167

#	Article	IF	CITATION
37	Comparative genomic hybridization, allelic imbalance, and fluorescence in situ hybridization on chromosome 8 in prostate cancer. Genes Chromosomes and Cancer, 1994, 11, 153-162.	1.5	180
38	Yeast Artificial Chromosome and Radiation Hybrid Map of Loci in Chromosome Band 8p22, a Common Region of Allelic Loss in Multiple Human Cancers. Genomics, 1994, 24, 317-323.	1.3	21
39	Expression of Nerve Growth Factor and Nerve Growth Factor Receptor Genes in Human Tissues and in Prostatic Adenocarcinoma Cell Lines. Journal of Neurochemistry, 1992, 59, 1381-1391.	2.1	106
40	1,25-Dihydroxyvitamin D3 is a potent inducer of nerve growth factor synthesis. Journal of Neuroscience Research, 1991, 28, 110-114.	1.3	196
41	Expression of the \hat{l}^2 -nerve growth factor gene in male sex organs of the mouse, rat, and guinea pig. Journal of Neuroscience Research, 1991, 28, 567-573.	1.3	41
42	Phorbol 12-myristate 13-acetate (PMA) increases the expression of the nerve growth factor (NGF) gene in mouse L-929 fibroblasts. FEBS Letters, 1990, 262, 42-44.	1.3	44