## IstvÃ;n Katona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8525697/publications.pdf Version: 2024-02-01



ΙςτνΑ:Ν ΚΑΤΟΝΑ

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | NECAB1 and NECAB2 are Prevalent Calcium-Binding Proteins of CB1/CCK-Positive GABAergic<br>Interneurons. Cerebral Cortex, 2021, 31, 1786-1806.                              | 1.6 | 18        |
| 2  | Detrimental impacts of mixed-ion radiation on nervous system function. Neurobiology of Disease, 2021, 151, 105252.                                                         | 2.1 | 20        |
| 3  | PharmacoSTORM nanoscale pharmacology reveals cariprazine binding on Islands of Calleja granule cells. Nature Communications, 2021, 12, 6505.                               | 5.8 | 24        |
| 4  | N-cadherin (Cdh2) Maintains Migration and Postmitotic Survival of Cortical Interneuron Precursors<br>in a Cell-Type-Specific Manner. Cerebral Cortex, 2020, 30, 1318-1329. | 1.6 | 9         |
| 5  | Microglia monitor and protect neuronal function through specialized somatic purinergic junctions.<br>Science, 2020, 367, 528-537.                                          | 6.0 | 381       |
| 6  | ABHD4-dependent developmental anoikis safeguards the embryonic brain. Nature Communications, 2020, 11, 4363.                                                               | 5.8 | 13        |
| 7  | A Molecular Collapse and the Mental "Falling Down― Neuron, 2020, 105, 956-958.                                                                                             | 3.8 | 1         |
| 8  | P2x7 receptors control demyelination and inflammation in the cuprizone model. Brain, Behavior, &<br>Immunity - Health, 2020, 4, 100062.                                    | 1.3 | 11        |
| 9  | Prenatal THC exposure produces a hyperdopaminergic phenotype rescued by pregnenolone. Nature<br>Neuroscience, 2019, 22, 1975-1985.                                         | 7.1 | 93        |
| 10 | Acetaminophen Relieves Inflammatory Pain through CB <sub>1</sub> Cannabinoid Receptors in the<br>Rostral Ventromedial Medulla. Journal of Neuroscience, 2018, 38, 322-334. | 1.7 | 53        |
| 11 | New observations in neuroscience using superresolution microscopy. Journal of Neuroscience, 2018, 38, 9459-9467.                                                           | 1.7 | 50        |
| 12 | Neurophysiology of space travel: energetic solar particles cause cell type-specific plasticity of neurotransmission. Brain Structure and Function, 2017, 222, 2345-2357.   | 1.2 | 47        |
| 13 | Presynaptic Protein Synthesis Is Required for Long-Term Plasticity of GABA Release. Neuron, 2016, 92, 479-492.                                                             | 3.8 | 162       |
| 14 | Correlated confocal and super-resolution imaging by VividSTORM. Nature Protocols, 2016, 11, 163-183.                                                                       | 5.5 | 64        |
| 15 | Functional and structural deficits at accumbens synapses in a mouse model of Fragile X. Frontiers in<br>Cellular Neuroscience, 2015, 9, 100.                               | 1.8 | 42        |
| 16 | Multiple Forms of Endocannabinoid and Endovanilloid Signaling Regulate the Tonic Control of GABA<br>Release. Journal of Neuroscience, 2015, 35, 10039-10057.               | 1.7 | 113       |
| 17 | Cannabis and Endocannabinoid Signaling in Epilepsy. Handbook of Experimental Pharmacology, 2015, 231, 285-316.                                                             | 0.9 | 58        |
| 18 | Cell-specific STORM super-resolution imaging reveals nanoscale organization of cannabinoid signaling. Nature Neuroscience, 2015, 18, 75-86.                                | 7.1 | 205       |

IstvÃin Katona

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Heterogeneous presynaptic distribution of monoacylglycerol lipase, a multipotent regulator of nociceptive circuits in the mouse spinal cord. European Journal of Neuroscience, 2014, 39, 419-434.                                                   | 1.2  | 16        |
| 20 | Multiple Mechanistically Distinct Modes of Endocannabinoid Mobilization at Central Amygdala<br>Glutamatergic Synapses. Neuron, 2014, 81, 1111-1125.                                                                                                 | 3.8  | 69        |
| 21 | Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome.<br>Nature Communications, 2012, 3, 1080.                                                                                                               | 5.8  | 234       |
| 22 | Endocannabinoidâ€dependent plasticity at spinal nociceptor synapses. Journal of Physiology, 2012, 590,<br>4717-4733.                                                                                                                                | 1.3  | 40        |
| 23 | Activation of Type 5 Metabotropic Glutamate Receptors and Diacylglycerol Lipase-Â Initiates<br>2-Arachidonoylglycerol Formation and Endocannabinoid-Mediated Analgesia. Journal of<br>Neuroscience, 2012, 32, 9457-9468.                            | 1.7  | 78        |
| 24 | Endocannabinoid-Mediated Long-Term Depression of Afferent Excitatory Synapses in Hippocampal<br>Pyramidal Cells and GABAergic Interneurons. Journal of Neuroscience, 2012, 32, 14448-14463.                                                         | 1.7  | 66        |
| 25 | Multiple Functions of Endocannabinoid Signaling in the Brain. Annual Review of Neuroscience, 2012, 35, 529-558.                                                                                                                                     | 5.0  | 497       |
| 26 | Complementary synaptic distribution of enzymes responsible for synthesis and inactivation of the endocannabinoid 2-arachidonoylglycerol in the human hippocampus. Neuroscience, 2011, 174, 50-63.                                                   | 1.1  | 55        |
| 27 | Unique inhibitory synapse with particularly rich endocannabinoid signaling machinery on pyramidal<br>neurons in basal amygdaloid nucleus. Proceedings of the National Academy of Sciences of the United<br>States of America, 2011, 108, 3059-3064. | 3.3  | 100       |
| 28 | Get stoned in GABAergic synapses. Nature Neuroscience, 2009, 12, 1081-1083.                                                                                                                                                                         | 7.1  | 6         |
| 29 | Molecular architecture of endocannabinoid signaling at nociceptive synapses mediating analgesia.<br>European Journal of Neuroscience, 2009, 29, 1964-1978.                                                                                          | 1.2  | 80        |
| 30 | Spinal Endocannabinoids and CB <sub>1</sub> Receptors Mediate C-Fiber–Induced Heterosynaptic Pain<br>Sensitization. Science, 2009, 325, 760-764.                                                                                                    | 6.0  | 161       |
| 31 | Endocannabinoid Receptors: CNS Localization of the CB1 Cannabinoid Receptor. Current Topics in Behavioral Neurosciences, 2009, 1, 65-86.                                                                                                            | 0.8  | 26        |
| 32 | Heterogeneous output pathways link the anterior pretectal nucleus with the zona incerta and the thalamus in rat. Journal of Comparative Neurology, 2008, 506, 122-140.                                                                              | 0.9  | 27        |
| 33 | The presence of pacemaker HCN channels identifies theta rhythmic GABAergic neurons in the medial septum. Journal of Physiology, 2008, 586, 3893-3915.                                                                                               | 1.3  | 103       |
| 34 | Endocannabinoid signaling as a synaptic circuit breaker in neurological disease. Nature Medicine,<br>2008, 14, 923-930.                                                                                                                             | 15.2 | 488       |
| 35 | Adding a new piece to the perisynaptic puzzle: PLCβ <sub>1</sub> is a component of the perisynaptic signaling machinery (PSM) (Commentary on Fukaya <i>etÂal.</i> ). European Journal of Neuroscience, 2008, 28, 1743-1743.                         | 1.2  | 1         |
| 36 | Reciprocal inhibition of G-protein signaling is induced by CB1 cannabinoid and GABAB receptor interactions in rat hippocampal membranes. Neurochemistry International, 2008, 52, 1402-1409.                                                         | 1.9  | 34        |

IstvÃin Katona

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Identification of the sites of 2-arachidonoylglycerol synthesis and action imply retrograde<br>endocannabinoid signaling at both GABAergic and glutamatergic synapses in the ventral tegmental<br>area. Neuropharmacology, 2008, 54, 95-107. | 2.0  | 163       |
| 38 | Enzymatic Machinery for Endocannabinoid Biosynthesis Associated with Calcium Stores in<br>Glutamatergic Axon Terminals. Journal of Neuroscience, 2008, 28, 1058-1063.                                                                        | 1.7  | 110       |
| 39 | Downregulation of the CB <sub>1</sub> Cannabinoid Receptor and Related Molecular Elements of the<br>Endocannabinoid System in Epileptic Human Hippocampus. Journal of Neuroscience, 2008, 28, 2976-2990.                                     | 1.7  | 207       |
| 40 | Hippocampal GABAergic Synapses Possess the Molecular Machinery for Retrograde Nitric Oxide<br>Signaling. Journal of Neuroscience, 2007, 27, 8101-8111.                                                                                       | 1.7  | 56        |
| 41 | Subcellular Arrangement of Molecules for 2-Arachidonoyl-Glycerol-Mediated Retrograde Signaling<br>and Its Physiological Contribution to Synaptic Modulation in the Striatum. Journal of Neuroscience,<br>2007, 27, 3663-3676.                | 1.7  | 340       |
| 42 | Involvement of Nitric Oxide in Depolarization-Induced Suppression of Inhibition in Hippocampal<br>Pyramidal Cells during Activation of Cholinergic Receptors. Journal of Neuroscience, 2007, 27,<br>10211-10222.                             | 1.7  | 75        |
| 43 | A Molecular Basis of Analgesic Tolerance to Cannabinoids. Journal of Neuroscience, 2007, 27, 4165-4177.                                                                                                                                      | 1.7  | 103       |
| 44 | Perisomatic Inhibition. Neuron, 2007, 56, 33-42.                                                                                                                                                                                             | 3.8  | 573       |
| 45 | Hardwiring the Brain: Endocannabinoids Shape Neuronal Connectivity. Science, 2007, 316, 1212-1216.                                                                                                                                           | 6.0  | 463       |
| 46 | Molecular architecture of the cannabinoid signaling system in the core of the nucleus accumbens.<br>Ideggyogyaszati Szemle, 2007, 60, 187-91.                                                                                                | 0.4  | 12        |
| 47 | Molecular Composition of the Endocannabinoid System at Glutamatergic Synapses. Journal of Neuroscience, 2006, 26, 5628-5637.                                                                                                                 | 1.7  | 451       |
| 48 | Endocannabinoid Signaling in Rat Somatosensory Cortex: Laminar Differences and Involvement of<br>Specific Interneuron Types. Journal of Neuroscience, 2005, 25, 6845-6856.                                                                   | 1.7  | 297       |
| 49 | Cellular and subcellular distribution of spinophilin, a PP1 regulatory protein that bundles F-actin in<br>dendritic spines. Journal of Comparative Neurology, 2004, 479, 374-388.                                                            | 0.9  | 44        |
| 50 | Interneurons are the local targets of hippocampal inhibitory cells which project to the medial septum. European Journal of Neuroscience, 2003, 17, 1861-1872.                                                                                | 1.2  | 157       |
| 51 | A Novel Network of Multipolar Bursting Interneurons Generates Theta Frequency Oscillations in Neocortex. Neuron, 2003, 38, 805-817.                                                                                                          | 3.8  | 288       |
| 52 | Role of Endogenous Cannabinoids in Synaptic Signaling. Physiological Reviews, 2003, 83, 1017-1066.                                                                                                                                           | 13.1 | 1,399     |
| 53 | Brain monoglyceride lipase participating in endocannabinoid inactivation. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10819-10824.                                                            | 3.3  | 1,206     |
| 54 | <i>In Vivo</i> Labeling of Parvalbumin-Positive Interneurons and Analysis of Electrical Coupling in Identified Neurons. Journal of Neuroscience, 2002, 22, 7055-7064.                                                                        | 1.7  | 282       |

IstvÃin Katona

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Distribution of CB1 Cannabinoid Receptors in the Amygdala and their Role in the Control of GABAergic<br>Transmission. Journal of Neuroscience, 2001, 21, 9506-9518.             | 1.7  | 580       |
| 56 | Evidence for presynaptic cannabinoid CB1 receptor-mediated inhibition of noradrenaline release in the guinea pig lung. European Journal of Pharmacology, 2001, 431, 237-244.    | 1.7  | 38        |
| 57 | Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. European<br>Journal of Neuroscience, 2000, 12, 3239-3249.                                     | 1.2  | 466       |
| 58 | Bidirectional control of airway responsiveness by endogenous cannabinoids. Nature, 2000, 408, 96-101.                                                                           | 13.7 | 193       |
| 59 | Unusual Target Selectivity of Perisomatic Inhibitory Cells in the Hilar Region of the Rat Hippocampus.<br>Journal of Neuroscience, 2000, 20, 6907-6919.                         | 1.7  | 76        |
| 60 | GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus.<br>Neuroscience, 2000, 100, 797-804.                                                    | 1.1  | 219       |
| 61 | Cholinergic innervation of mossy cells in the rat fascia dentata. Hippocampus, 1999, 9, 314-320.                                                                                | 0.9  | 36        |
| 62 | Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus.<br>Neuroscience, 1999, 88, 37-55.                                                      | 1.1  | 198       |
| 63 | Presynaptically Located CB1 Cannabinoid Receptors Regulate GABA Release from Axon Terminals of Specific Hippocampal Interneurons. Journal of Neuroscience, 1999, 19, 4544-4558. | 1.7  | 1,030     |
| 64 | Mossy Cells of the Rat Dentate Gyrus are Immunoreactive for Calcitonin Gene-related Peptide (CGRP).<br>European Journal of Neuroscience, 1997, 9, 1815-1830.                    | 1.2  | 52        |