
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8525431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Transcriptional Landscape of the Mammalian Genome. Science, 2005, 309, 1559-1563.	12.6	3,227
2	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	27.8	1,838
3	Local GABA Circuit Control of Experience-Dependent Plasticity in Developing Visual Cortex. Science, 1998, 282, 1504-1508.	12.6	793
4	Inhibitory threshold for critical-period activation in primary visual cortex. Nature, 2000, 404, 183-186.	27.8	608
5	Functional postnatal development of the rat primary visual cortex and the role of visual experience: Dark rearing and monocular deprivation. Vision Research, 1994, 34, 709-720.	1.4	599
6	Common circuit defect of excitatory-inhibitory balance in mouse models of autism. Journal of Neurodevelopmental Disorders, 2009, 1, 172-181.	3.1	538
7	Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science, 2015, 347, 1010-1014.	12.6	517
8	Specific GABA _A Circuits for Visual Cortical Plasticity. Science, 2004, 303, 1681-1683.	12.6	439
9	Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9149-9154.	7.1	322
10	Anatomical Correlates of Functional Plasticity in Mouse Visual Cortex. Journal of Neuroscience, 1999, 19, 4388-4406.	3.6	302
11	Epigenetic influences on brain development and plasticity. Current Opinion in Neurobiology, 2009, 19, 207-212.	4.2	290
12	Sensory Integration in Mouse Insular Cortex Reflects GABA Circuit Maturation. Neuron, 2014, 83, 894-905.	8.1	282
13	Autism: A "Critical Period―Disorder?. Neural Plasticity, 2011, 2011, 1-17.	2.2	241
14	Excitatory–inhibitory balance and critical period plasticity in developing visual cortex. Progress in Brain Research, 2005, 147, 115-124.	1.4	222
15	Restoration of Visual Function by Enhancing Conduction in Regenerated Axons. Cell, 2016, 164, 219-232.	28.9	209
16	FANTOM5 CAGE profiles of human and mouse samples. Scientific Data, 2017, 4, 170112.	5.3	195
17	Rapid Critical Period Induction by Tonic Inhibition in Visual Cortex. Journal of Neuroscience, 2003, 23, 6695-6702.	3.6	165
18	NMDA Receptor Regulation Prevents Regression of Visual Cortical Function in the Absence of Mecp2. Neuron, 2012, 76, 1078-1090.	8.1	163

#	Article	IF	CITATIONS
19	Separable features of visual cortical plasticity revealed by N-methyl-D-aspartate receptor 2A signaling. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2854-2859.	7.1	159
20	Targeting a Complex Transcriptome: The Construction of the Mouse Full-Length cDNA Encyclopedia. Genome Research, 2003, 13, 1273-1289.	5.5	154
21	Sensory experience regulates cortical inhibition by inducing IGF1 in VIP neurons. Nature, 2016, 531, 371-375.	27.8	146
22	Optimization of Somatic Inhibition at Critical Period Onset in Mouse Visual Cortex. Neuron, 2007, 53, 805-812.	8.1	116
23	Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Science Advances, 2018, 4, eaat0626.	10.3	114
24	Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5289-5294.	7.1	111
25	Visual evoked potentials detect cortical processing deficits in <scp>R</scp> ett syndrome. Annals of Neurology, 2015, 78, 775-786.	5.3	96
26	Monoclonal antibodies to nerve growth factor affect the postnatal development of the visual system Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 684-688.	7.1	90
27	Trehalose-enhanced isolation of neuronal sub-types from adult mouse brain. BioTechniques, 2012, 52, 381-385.	1.8	87
28	A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome. Nature Communications, 2017, 8, 16077.	12.8	72
29	Visual Acuity Development and Plasticity in the Absence of Sensory Experience. Journal of Neuroscience, 2013, 33, 17789-17796.	3.6	69
30	Chronic Administration of the N-Methyl-D-Aspartate Receptor Antagonist Ketamine Improves Rett Syndrome Phenotype. Biological Psychiatry, 2016, 79, 755-764.	1.3	69
31	Rigor and reproducibility in rodent behavioral research. Neurobiology of Learning and Memory, 2019, 165, 106780.	1.9	65
32	Cortical Feedback Regulates Feedforward Retinogeniculate Refinement. Neuron, 2016, 91, 1021-1033.	8.1	55
33	The Stage of the Estrus Cycle Is Critical for Interpretation of Female Mouse Social Interaction Behavior. Frontiers in Behavioral Neuroscience, 2020, 14, 113.	2.0	54
34	Deep learning of spontaneous arousal fluctuations detects early cholinergic defects across neurodevelopmental mouse models and patients. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23298-23303.	7.1	51
35	NMDA 2A receptors in parvalbumin cells mediate sex-specific rapid ketamine responseÂon cortical activity. Molecular Psychiatry, 2019, 24, 828-838.	7.9	49
36	Bilayer Nanomesh Structures for Transparent Recording and Stimulating Microelectrodes. Advanced Functional Materials, 2017, 27, 1704117.	14.9	47

#	Article	IF	CITATIONS
37	Brain mapping across 16 autism mouse models reveals a spectrum of functional connectivity subtypes. Molecular Psychiatry, 2021, 26, 7610-7620.	7.9	47
38	Cell-Specific Regulation of N-Methyl-D-Aspartate Receptor Maturation by Mecp2 in Cortical Circuits. Biological Psychiatry, 2016, 79, 746-754.	1.3	46
39	MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit. PLoS ONE, 2016, 11, e0148129.	2.5	45
40	Accelerated Hyper-Maturation of Parvalbumin Circuits in the Absence of MeCP2. Cerebral Cortex, 2020, 30, 256-268.	2.9	36
41	Remodeling of retrotransposon elements during epigenetic induction of adult visual cortical plasticityÂby HDAC inhibitors. Epigenetics and Chromatin, 2015, 8, 55.	3.9	32
42	MeCP2: an epigenetic regulator of critical periods. Current Opinion in Neurobiology, 2019, 59, 95-101.	4.2	31
43	Transparent, Flexible, Penetrating Microelectrode Arrays with Capabilities of Singleâ€Unit Electrophysiology. Advanced Biology, 2019, 3, e1800276.	3.0	30
44	Temporal Aspects of Contrast Visual Evoked Potentials in the Pigmented Rat: Effect of Dark Rearing. Vision Research, 1997, 37, 389-395.	1.4	28
45	Aberrant Development and Plasticity of Excitatory Visual Cortical Networks in the Absence of <i>cpg15</i> . Journal of Neuroscience, 2014, 34, 3517-3522.	3.6	26
46	Axonal Transport Blockade in the Neonatal Rat Optic Nerve Induces Limited Retinal Ganglion Cell Death. Journal of Neuroscience, 1997, 17, 7045-7052.	3.6	25
47	Infusion of nerve growth factor (NGF) into kitten visual cortex increases immunoreactivity for NGF, NGF receptors, and choline acetyltransferase in basal forebrain without affecting ocular dominance plasticity or column development. Neuroscience, 2001, 108, 569-585.	2.3	25
48	Schwann cells transplanted in the lateral ventricles prevent the functional and anatomical effects of monocular deprivation in the rat Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2572-2576.	7.1	18
49	Role of neurotrophins in the development and plasticity of the visual system: experiments on dark rearing. International Journal of Psychophysiology, 2000, 35, 189-196.	1.0	18
50	Developmental Plasticity of Inhibitory Circuitry. Journal of Neuroscience, 2006, 26, 10358-10361.	3.6	16
51	Transplant of Schwann Cells Allows Normal Development of the Visual Cortex of Dark-reared Rats. European Journal of Neuroscience, 1997, 9, 102-112.	2.6	14
52	A Diet With Docosahexaenoic and Arachidonic Acids as the Sole Source of Polyunsaturated Fatty Acids Is Sufficient to Support Visual, Cognitive, Motor, and Social Development in Mice. Frontiers in Neuroscience, 2019, 13, 72.	2.8	14
53	Phenotypic characterization of Cdkl5-knockdown neurons establishes elongated cilia as a functional assay for CDKL5 Deficiency Disorder. Neuroscience Research, 2022, 176, 73-78.	1.9	14
54	Subtraction of cap-trapped full-length cDNA libraries to select rare transcripts. BioTechniques, 2003, 35, 510-518.	1.8	12

#	Article	IF	CITATIONS
55	A Resource for Transcriptomic Analysis in the Mouse Brain. PLoS ONE, 2008, 3, e3012.	2.5	11
56	Intellectual and Developmental Disabilities Research Centers: A Multidisciplinary Approach to Understand the Pathogenesis of Methyl-CpG Binding Protein 2-related Disorders. Neuroscience, 2020, 445, 190-206.	2.3	11
57	Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. Nature Communications, 2021, 12, 3297.	12.8	11
58	CAGE-defined promoter regions of the genes implicated in Rett Syndrome. BMC Genomics, 2014, 15, 1177.	2.8	10
59	Animal Models of Neurodevelopmental Disorders. Neuroscience, 2020, 445, 1-2.	2.3	4
60	RNA extraction from sorted neuronal subtypes. BioTechniques, 2017, 62, .	1.8	1
61	Behavioral analyses of animal models of intellectual and developmental disabilities. Neurobiology of Learning and Memory, 2019, 165, 107087.	1.9	1
62	Accelerated maturation of visual response properties in telencephalin knockout mice. Neuroscience Research, 2007, 58, S135.	1.9	0
63	Epigenetic regulation of critical period plasticity in visual cortex. Neuroscience Research, 2007, 58, S66.	1.9	0
64	Deep Learning of spontaneous arousal fluctuation detects early impairments in Rett Syndrome and CDKL5 disorder. IBRO Reports, 2019, 6, S25-S26.	0.3	0
65	Microelectrode Arrays: Transparent, Flexible, Penetrating Microelectrode Arrays with Capabilities of Singleâ€Unit Electrophysiology (Adv. Biosys. 3/2019). Advanced Biology, 2019, 3, 1970033.	3.0	0
66	Visual Cortical Plasticity and Neurotrophic Factors. , 1995, , 197-209.		0
67	Dynamical Characteristics of Wild-Type Mouse Spontaneous Pupillary Fluctuations*. , 2021, 2021, 853-856.		0