
Leonardo Cascini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8525379/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 2008, 102, 85-98.	2.9	834
2	Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 2014, 73, 209.	1.6	541
3	Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology, 2008, 102, 99-111.	2.9	429
4	Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Engineering Geology, 2010, 112, 29-42.	2.9	253
5	Application of a SPH depth-integrated model to landslide run-out analysis. Landslides, 2014, 11, 793-812.	2.7	198
6	Modeling of Rainfall-Induced Shallow Landslides of the Flow-Type. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2010, 136, 85-98.	1.5	183
7	Applicability of landslide susceptibility and hazard zoning at different scales. Engineering Geology, 2008, 102, 164-177.	2.9	165
8	Typical source areas of May 1998 flow-like mass movements in the Campania region, Southern Italy. Engineering Geology, 2008, 96, 107-125.	2.9	146
9	SPH run-out modelling of channelised landslides of the flow type. Geomorphology, 2014, 214, 502-513.	1.1	111
10	Susceptibility analysis of shallow landslides source areas using physically based models. Natural Hazards, 2010, 53, 313-332.	1.6	110
11	Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64, 598-611.	4.9	99
12	Geotechnical characterisation of pyroclastic soils involved in huge flowslides. Geotechnical and Geological Engineering, 2005, 23, 365-402.	0.8	97
13	Seasonal effects of rainfall on the shallow pyroclastic deposits of the Campania region (southern) Tj ETQq1 1 0.7	784314 rgl 2.7	3T /Overlock 97
14	Subsidence monitoring in Sarno urban area via multiâ€ŧemporal DInSAR technique. International Journal of Remote Sensing, 2006, 27, 1709-1716.	1.3	96
15	A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils. Engineering Geology, 2017, 223, 71-81.	2.9	87
16	Modelling the space–time evolution of bed entrainment for flow-like landslides. Engineering Geology, 2016, 212, 10-20.	2.9	81
17	Spatial and temporal occurrence of rainfall-induced shallow landslides of flow type: A case of Sarno-Quindici, Italy. Geomorphology, 2011, 126, 148-158.	1.1	70
18	A numerical procedure for predicting rainfall-induced movements of active landslides along pre-existing slip surfaces. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32, 327-351.	1.7	66

LEONARDO CASCINI

#	Article	IF	CITATIONS
19	Interplay of rheology and entrainment in debris avalanches: a numerical study. Canadian Geotechnical Journal, 2014, 51, 1318-1330.	1.4	66
20	The combination of DInSAR and facility damage data for the updating of slow-moving landslide inventory maps at medium scale. Natural Hazards and Earth System Sciences, 2013, 13, 1527-1549.	1.5	64
21	Rockfall risk assessment to persons travelling in vehicles along a road: the case study of the Amalfi coastal road (southern Italy). Natural Hazards, 2012, 62, 691-721.	1.6	57
22	Modelling the post-failure stage of rainfall-induced landslides of the flow type. Canadian Geotechnical Journal, 2013, 50, 924-934.	1.4	50
23	A general framework and related procedures for multiscale analyses of DInSAR data in subsiding urban areas. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105, 186-210.	4.9	49
24	SPH-FDM propagation and pore water pressure modelling for debris flows in flume tests. Engineering Geology, 2016, 213, 74-83.	2.9	43
25	Groundwater Modeling for the Analysis of Active Slow-Moving Landslides. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2010, 136, 1220-1230.	1.5	42
26	Landslide zoning over large areas from a sample inventory by means of scale-dependent terrain units. Geomorphology, 2013, 182, 33-48.	1.1	42
27	Expert engagement in participatory processes: translating stakeholder discourses into policy options. Natural Hazards, 2016, 81, 69-88.	1.6	42
28	Inception of debris avalanches: remarks on geomechanical modelling. Landslides, 2013, 10, 701-711.	2.7	39
29	Detection and monitoring of facilities exposed to subsidence phenomena via past and current generation SAR sensors. Journal of Geophysics and Engineering, 2013, 10, 064001.	0.7	34
30	Individual and societal risk owing to landslides in the Campania region (southern Italy). Georisk, 2008, 2, 125-140.	2.6	33
31	Susceptibility zoning of shallow landslides in fine grained soils by statistical methods. Catena, 2016, 139, 250-264.	2.2	30
32	Displacement trends of slow-moving landslides: Classification and forecasting. Journal of Mountain Science, 2014, 11, 592-606.	0.8	28
33	Micromechanical modelling of rainsplash erosion in unsaturated soils by Discrete Element Method. Catena, 2016, 147, 146-152.	2.2	28
34	DInSAR data assimilation for settlement prediction: case study of a railway embankment in the Netherlands. Canadian Geotechnical Journal, 2017, 54, 502-517.	1.4	26
35	Groundwater modelling of a weathered gneissic cover. Canadian Geotechnical Journal, 2006, 43, 1153-1166.	1.4	25
36	Influence of grass roots on shear strength of pyroclastic soils. Canadian Geotechnical Journal, 2020, 57, 1320-1334.	1.4	25

LEONARDO CASCINI

#	Article	IF	CITATIONS
37	A new–old approach for shallow landslide analysis and susceptibility zoning in fine-grained weathered soils of southern Italy. Geomorphology, 2015, 241, 371-381.	1.1	23
38	Typical displacement behaviours of slope movements. Landslides, 2020, 17, 1105-1116.	2.7	23
39	Large deformation FEMLIP drained analysis of a vertical cut. Acta Geotechnica, 2013, 8, 125.	2.9	15
40	Soil depth reconstruction for the assessment of the susceptibility to shallow landslides in fine-grained slopes. Landslides, 2017, 14, 459-471.	2.7	14
41	Multidisciplinary analysis of combined flow-like mass movements in a catchment of Southern Italy. Georisk, 2021, 15, 41-58.	2.6	12
42	Wetting–drying response of an unsaturated pyroclastic soil vegetated with long-root grass. Environmental Geotechnics, 2023, 10, 332-350.	1.3	11
43	Quantitative risk analysis for hyperconcentrated flows in Nocera Inferiore (southern Italy). Natural Hazards, 2016, 81, 89-115.	1.6	9
44	A land subsidence study via DInSAR technique over large urbanised areas. , 2007, , .		7
45	Thickness of pyroclastic cover beds: the case study of Mount Albino (Campania region, southern Italy). Journal of Maps, 2016, 12, 79-87.	1.0	6
46	Modelling the Propagation of Debris Avalanches in Presence of Obstacles. , 2017, , 469-475.		6
47	A cost–benefit analysis of mitigation options for optimal management of risks posed by flow-like phenomena. Natural Hazards, 2016, 81, 117-144.	1.6	5
48	Kinematics of flow mass movements on inclined surfaces. Theoretical and Computational Fluid Dynamics, 2019, 33, 107-123.	0.9	5
49	Displacement scenarios of a rainfall-controlled slow moving active slide in stiff clays. Georisk, 2009, 3, 116-125.	2.6	4
50	Introduction to the thematic set of papers on the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 2014, 73, 207-208.	1.6	4
51	LARAM School 2018: the doctoral school on "LAndslide Risk Assessment and Mitigation― Landslides, 2018, 15, 1445-1447.	2.7	4
52	Numerical Modeling on Fate and Transport of Pollutants in the Vadose Zone. Environmental Sciences Proceedings, 2020, 2, .	0.3	4
53	Forecasting spring flow time series. Journal of the Italian Statistical Society, 1994, 3, 1-23.	0.1	3
54	Wetting-induced collapse behaviour of a natural and vegetated coarse pyroclastic soil. E3S Web of Conferences, 2020, 195, 03025.	0.2	3

LEONARDO CASCINI

#	Article	IF	CITATIONS
55	LARAM School 2019: the yearly doctoral school on "LAndslide Risk Assessment and Mitigationâ€. Landslides, 2019, 16, 1419-1421.	2.7	2
56	Modelling of debris flows and flash floods propagation: a case study from Italian Alps. European Journal of Environmental and Civil Engineering, 2020, , 1-24.	1.0	2
57	LARAM School 2020 goes online: the 15th doctoral school on "LAndslide Risk Assessment and Mitigation― Landslides, 2020, 17, 1997-1999.	2.7	2
58	Hyperconcentrated Flow Susceptibility Analysis and Zoning at Medium Scale: Methodological Approach and Case Study. , 2013, , 395-401.		2
59	LARAM School: An Ongoing Experience. ICL Contribution To Landslide Disaster Risk Reduction, 2021, , 251-257.	0.3	1
60	Investigating the evolution of landslides via dimensionless displacement trends. Mathematics and Mechanics of Complex Systems, 2021, 9, 231-272.	0.5	1
61	A numerical investigation on debris avalanche propagation. , 2014, , 357-362.		0
62	Geomechanical Modelling of 1999 Cervinara Debris Avalanche Propagation (Southern Italy). , 2015, , 1245-1249.		0