Tun Seng Herng

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8525378/tun-seng-herng-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

80
papers

2,237
citations

29
h-index
g-index

82
ext. papers

9.6
avg, IF

L-index

#	Paper	IF	Citations
80	High Temperature Co-firing of 3D-Printed Al-ZnO/Al2O3 Multi-Material Two-Phase Flow Sensor. Journal of Materiomics, 2021,	6.7	2
79	Fabrication of 3D-Printed Ceramic Structures for Portable Solar Desalination Devices. <i>ACS Applied Materials & ACS Applied & ACS Appli</i>	9.5	12
78	A Stable [4,3]Peri-acene Diradicaloid: Synthesis, Structure, and Electronic Properties. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4464-4469	16.4	10
77	A Stable [4,3]Peri-acene Diradicaloid: Synthesis, Structure, and Electronic Properties. <i>Angewandte Chemie</i> , 2021 , 133, 4514-4519	3.6	2
76	Printable two-dimensional superconducting monolayers. <i>Nature Materials</i> , 2021 , 20, 181-187	27	38
75	Two-Dimensional Conjugated Covalent Organic Framework Films via Oxidative CL Coupling Reactions at a Liquid Liquid Interface. <i>Organic Materials</i> , 2021 , 03, 060-066	1.9	1
74	Imprinting Ferromagnetism and Superconductivity in Single Atomic Layers of Molecular Superlattices. <i>Advanced Materials</i> , 2020 , 32, e1907645	24	11
73	Enhancement of Virtual Magnetic Moment Formation in ZnO NPs by Li+ Ion Doping. <i>Journal of Superconductivity and Novel Magnetism</i> , 2020 , 33, 2851-2859	1.5	4
7 ²	Domain Engineering in ReS2 by Coupling Strain during Electrochemical Exfoliation. <i>Advanced Functional Materials</i> , 2020 , 30, 2003057	15.6	8
71	S-shaped para-Quinodimethane-Embedded Double [6]Helicene and Its Charged Species Showing Open-Shell Diradical Character. <i>Chemistry - A European Journal</i> , 2020 , 26, 15613-15622	4.8	6
70	3D global aromaticity in a fully conjugated diradicaloid cage at different oxidation states. <i>Nature Chemistry</i> , 2020 , 12, 242-248	17.6	59
69	Formation of a four-bladed waterwheel-type chloro-bridged dicopper(ii) complex with dithiamacrocycle via double exo-coordination. <i>Dalton Transactions</i> , 2020 , 49, 1365-1369	4.3	1
68	A 3D-printing method of fabrication for metals, ceramics, and multi-materials using a universal self-curable technique for robocasting. <i>Materials Horizons</i> , 2020 , 7, 1083-1090	14.4	30
67	A Stable Nitrogen-centered Bis(imino)perylene Dimer-based Diradicaloid. <i>Asian Journal of Organic Chemistry</i> , 2020 , 9, 1798-1801	3	0
66	2,6-/1,5-Naphthoquinodimethane bridged porphyrin dimer diradicaloids. <i>Journal of Porphyrins and Phthalocyanines</i> , 2020 , 24, 220-229	1.8	6
65	GO-Functionalized Large Magnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability and Hyperthermia Performance. <i>ACS Applied Materials & Discrete States</i> , 2019, 11, 22703-22713	9.5	37
64	Evidence of Spin Frustration in a Vanadium Diselenide Monolayer Magnet. <i>Advanced Materials</i> , 2019 , 31, e1901185	24	85

(2018-2019)

63	Chemically Exfoliated VSe Monolayers with Room-Temperature Ferromagnetism. <i>Advanced Materials</i> , 2019 , 31, e1903779	24	131
62	NiFe (sulfur)oxyhydroxide porous nanoclusters/Ni foam composite electrode drives a large-current-density oxygen evolution reaction with an ultra-low overpotential. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18816-18822	13	17
61	High-Magnetization Tetragonal Ferrite-Based Films Induced by Carbon and Oxygen Vacancy Pairs. <i>ACS Applied Materials & Distributed & Dis</i>	9.5	4
60	From Open-Shell Singlet Diradicaloid to Closed-Shell Global Antiaromatic Macrocycles. <i>Angewandte Chemie</i> , 2018 , 130, 7284-7288	3.6	13
59	From Open-Shell Singlet Diradicaloid to Closed-Shell Global Antiaromatic Macrocycles. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7166-7170	16.4	26
58	Stable Nitrogen-Centered Bis(imino)rylene Diradicaloids. <i>Chemistry - A European Journal</i> , 2018 , 24, 4944	- <u>4</u> . 9 51	11
57	Global Aromaticity in Macrocyclic Cyclopenta-Fused Tetraphenanthrenylene Tetraradicaloid and Its Charged Species. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 13052-13056	16.4	35
56	Toward Two-Dimensional EConjugated Covalent Organic Radical Frameworks. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8007-8011	16.4	94
55	Stable Expanded Porphycene-Based Diradicaloid and Tetraradicaloid. <i>Angewandte Chemie</i> , 2018 , 130, 12714-12717	3.6	3
54	Stable Expanded Porphycene-Based Diradicaloid and Tetraradicaloid. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 12534-12537	16.4	19
53	Diazuleno-s-indacene Diradicaloids: Syntheses, Properties, and Local (anti)Aromaticity Shift from Neutral to Dicationic State. <i>Angewandte Chemie</i> , 2018 , 130, 16979-16983	3.6	19
52	Superoctazethrene: An Open-Shell Graphene-like Molecule Possessing Large Diradical Character but Still with Reasonable Stability. <i>Journal of the American Chemical Society</i> , 2018 , 140, 14054-14058	16.4	48
51	Diazuleno-s-indacene Diradicaloids: Syntheses, Properties, and Local (anti)Aromaticity Shift from Neutral to Dicationic State. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16737-16741	16.4	38
50	Global Aromaticity in Macrocyclic Cyclopenta-Fused Tetraphenanthrenylene Tetraradicaloid and Its Charged Species. <i>Angewandte Chemie</i> , 2018 , 130, 13236-13240	3.6	13
49	Toward Two-Dimensional EConjugated Covalent Organic Radical Frameworks. <i>Angewandte Chemie</i> , 2018 , 130, 8139-8143	3.6	20
48	Curved Etonjugated corannulene dimer diradicaloids. Chemical Science, 2018, 9, 5100-5105	9.4	17
47	A Peri-tetracene Diradicaloid: Synthesis and Properties. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9697-9701	16.4	60
46	A Peri-tetracene Diradicaloid: Synthesis and Properties. <i>Angewandte Chemie</i> , 2018 , 130, 9845-9849	3.6	27

45	Radical and Diradical Formation in Naphthalene Diimides through Simple Chemical Oxidation. <i>ChemPhysChem</i> , 2017 , 18, 591-595	3.2	17
44	Toward Stable Superbenzoquinone Diradicaloids. <i>Angewandte Chemie</i> , 2017 , 129, 5094-5098	3.6	18
43	A Stable N-Annulated Perylene-Bridged Bisphenoxyl Diradicaloid and the Corresponding Boron Trifluoride Complex. <i>Chemistry - A European Journal</i> , 2017 , 23, 9419-9424	4.8	11
42	Cyclopenta Ring Fused Bisanthene and Its Charged Species with Open-Shell Singlet Diradical Character and Global Aromaticity/ Anti-Aromaticity. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 11415-11419	16.4	44
41	Magnetic Behavior of ZnO Nanorods Doped with Silver (Ag3+) Ions. <i>Journal of Nanoscience and Nanotechnology</i> , 2017 , 17, 5631-5636	1.3	5
40	Ferrite-based soft and hard magnetic structures by extrusion free-forming. RSC Advances, 2017 , 7, 2712	28 5.7 713	3846
39	Toward Benzobis(thiadiazole)-based Diradicaloids. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 2177-2182	4.5	16
38	Ambient Stable Radical Cations, Diradicaloid EDimeric Dications, Closed-Shell Dications, and Diradical Dications of Methylthio-Capped Rylenes. <i>Chemistry - A European Journal</i> , 2017 , 23, 7595-7606	4.8	10
37	Toward Stable Superbenzoquinone Diradicaloids. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5012-5016	16.4	32
36	A Three-Dimensionally EConjugated Diradical Molecular Cage. Angewandte Chemie, 2017 , 129, 15585-15	5589	13
35	A Three-Dimensionally Econjugated Diradical Molecular Cage. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15383-15387	16.4	35
34	Fluorenyl Based Macrocyclic Polyradicaloids. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13173	3-16.48	3 ₄₄
33	Stable Oxindolyl-Based Analogues of Chichibabin's and Mler's Hydrocarbons. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14154-14158	16.4	22
32	Stable Oxindolyl-Based Analogues of Chichibabin's and Mller's Hydrocarbons. <i>Angewandte Chemie</i> , 2017 , 129, 14342-14346	3.6	8
31	Conformationally Flexible Bis(9-fluorenylidene)porphyrin Diradicaloids. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13484-13488	16.4	33
30	Conformationally Flexible Bis(9-fluorenylidene)porphyrin Diradicaloids. <i>Angewandte Chemie</i> , 2017 , 129, 13669-13673	3.6	16
29	Synthesis, structures and magnetic properties of isoreticular polyrotaxane-type two-dimensional coordination polymers. <i>RSC Advances</i> , 2017 , 7, 45582-45586	3.7	3
28	Cyclopenta Ring Fused Bisanthene and Its Charged Species with Open-Shell Singlet Diradical Character and Global Aromaticity/ Anti-Aromaticity. <i>Angewandte Chemie</i> , 2017 , 129, 11573-11577	3.6	20

(2016-2016)

27	Supramolecular Isomerism and Polyrotaxane-Based Two-Dimensional Coordination Polymers. <i>Crystal Growth and Design</i> , 2016 , 16, 7278-7285	3.5	23
26	Higher Order EConjugated Polycyclic Hydrocarbons with Open-Shell Singlet Ground State: Nonazethrene versus Nonacene. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10323-30	16.4	89
25	Extended Bis(benzothia)quinodimethanes and Their Dications: From Singlet Diradicaloids to Isoelectronic Structures of Long Acenes. <i>Angewandte Chemie</i> , 2016 , 128, 9462-9466	3.6	15
24	Strong Modification of Excitons and Optical Conductivity for Different Dielectric Environments in ZnO Films. <i>IEEE Photonics Journal</i> , 2016 , 8, 1-9	1.8	19
23	Fully Fused Quinoidal/Aromatic Carbazole Macrocycles with Poly-radical Characters. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7782-90	16.4	63
22	Tunable Electrical Conductivity and Magnetic Property of the Two Dimensional Metal Organic Framework [Cu(TPyP)Cu2(O2CCH3)4]. ACS Applied Materials & amp; Interfaces, 2016, 8, 16154-9	9.5	72
21	Bovine Serum Albumin-Conjugated Ferrimagnetic Iron Oxide Nanoparticles to Enhance the Biocompatibility and Magnetic Hyperthermia Performance. <i>Nano-Micro Letters</i> , 2016 , 8, 80-93	19.5	51
20	Thermoresponsive magnetic ionic liquids: synthesis and temperature switchable magnetic separation. <i>RSC Advances</i> , 2016 , 6, 15731-15734	3.7	10
19	Benzo-thia-fused []thienoacenequinodimethanes with small to moderate diradical characters: the role of pro-aromaticity anti-aromaticity. <i>Chemical Science</i> , 2016 , 7, 3036-3046	9.4	31
18	Octazethrene and Its Isomer with Different Diradical Characters and Chemical Reactivity: The Role of the Bridge Structure. <i>Journal of Organic Chemistry</i> , 2016 , 81, 2911-9	4.2	34
17	Toward Tetraradicaloid: The Effect of Fusion Mode on Radical Character and Chemical Reactivity. Journal of the American Chemical Society, 2016 , 138, 1065-77	16.4	76
16	Super-heptazethrene. Angewandte Chemie - International Edition, 2016, 55, 8615-9	16.4	59
15	Super-heptazethrene. Angewandte Chemie, 2016 , 128, 8757-8761	3.6	19
14	Kinetically Blocked Stable 5,6:12,13-Dibenzozethrene: A Laterally Extended Zethrene with Enhanced Diradical Character. <i>Organic Letters</i> , 2016 , 18, 2886-9	6.2	23
13	Networked Spin Cages: Tunable Magnetism and Lithium Ion Storage via Modulation of Spin-Electron Interactions. <i>Inorganic Chemistry</i> , 2016 , 55, 9892-9897	5.1	6
12	Stable 3,6-Linked Fluorenyl Radical Oligomers with Intramolecular Antiferromagnetic Coupling and Polyradical Characters. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13048-13058	16.4	35
11	Novel room-temperature spin-valve-like magnetoresistance in magnetically coupled nano-column Fe3O4/Ni heterostructure. <i>Nanoscale</i> , 2016 , 8, 15737-43	7.7	8
10	Extended Bis(benzothia)quinodimethanes and Their Dications: From Singlet Diradicaloids to Isoelectronic Structures of Long Acenes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9316-20	16.4	48

9	Achieving a high magnetization in sub-nanostructured magnetite films by spin-flipping of tetrahedral Fe3+ cations. <i>Nano Research</i> , 2015 , 8, 2935-2945	10	19
8	Perpendicular magnetic clusters with configurable domain structures via dipoledipole interactions. <i>Nano Research</i> , 2015 , 8, 3639-3650	10	4
7	Orientation Mediated Enhancement on Magnetic Hyperthermia of Fe3O4 Nanodisc. <i>Advanced Functional Materials</i> , 2015 , 25, 812-820	15.6	101
6	Magnetic and optical studies of hydrogenated Cu-doped ZnO film. <i>Journal of the Korean Physical Society</i> , 2013 , 62, 1738-1743	0.6	1
5	Mutual ferromagnetic-ferroelectric coupling in multiferroic copper-doped ZnO. <i>Advanced Materials</i> , 2011 , 23, 1635-40	24	85
4	Stable bipolar surface potential behavior of copper-doped zinc oxide films studied by Kelvin probe force microscopy. <i>Applied Physics Letters</i> , 2010 , 97, 232103	3.4	19
3	Structural and magnetic studies of Cu-doped ZnO films synthesized via a hydrothermal route. <i>Journal of Materials Chemistry</i> , 2010 , 20, 5756		20
2	Room Temperature Ferromagnetism in \$({hbox {Zn}}_{1-{rm x}},{hbox {Mg}}_{rm x}){hbox {O}}\$ Film. IEEE Transactions on Magnetics, 2010 , 46, 1338-1341	2	2
1	Stable Quadruple Helical Tetraradicaloid with Thermally Induced Intramolecular Magnetic Switching. <i>CCS Chemistry</i> ,399-407	7.2	5