Marion S Buckwalter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8525150/publications.pdf

Version: 2024-02-01

71 papers

8,935 citations

33 h-index 63 g-index

73 all docs 73 docs citations

73 times ranked

13600 citing authors

#	Article	IF	Citations
1	Homeâ€based virtual reality therapy for hand recovery after stroke. PM and R, 2022, 14, 320-328.	1.6	9
2	Abstract TP15: Self-report Does Not Align With Objective Assessments Of Memory And Fine Motor Functioning In Stroke Survivors. Stroke, 2022, 53, .	2.0	0
3	Prognostication of ICU Patients by Providers with and without Neurocritical Care Training. Neurocritical Care, 2022, 37, 190-199.	2.4	7
4	Immune Pathways in Etiology, Acute Phase, and Chronic Sequelae of Ischemic Stroke. Circulation Research, 2022, 130, 1167-1186.	4.5	74
5	An RNA-sequencing transcriptome of the rodent Schwann cell response to peripheral nerve injury. Journal of Neuroinflammation, 2022, 19, 105.	7.2	25
6	Obesity Drives Delayed Infarct Expansion, Inflammation, and Distinct Gene Networks in a Mouse Stroke Model. Translational Stroke Research, 2021, 12, 331-346.	4.2	7
7	B and T Lymphocyte Densities Remain Stable With Age in Human Cortex. ASN Neuro, 2021, 13, 175909142110181.	2.7	5
8	Spleen glia are a transcriptionally unique glial subtype interposed between immune cells and sympathetic axons. Glia, 2021, 69, 1799-1815.	4.9	19
9	Mapping causal circuit dynamics in stroke using simultaneous electroencephalography and transcranial magnetic stimulation. BMC Neurology, 2021, 21, 280.	1.8	6
10	Brain profiling in murine colitis and human epilepsy reveals neutrophils and $TNF\hat{l}\pm$ as mediators of neuronal hyperexcitability. Journal of Neuroinflammation, 2021, 18, 199.	7.2	15
11	T cells direct microglial repair of white matter after stroke. Trends in Neurosciences, 2021, 44, 769-770.	8.6	6
12	New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Frontiers in Aging Neuroscience, 2021, 13, 623751.	3.4	17
13	Ischemiaâ€triggered, immuneâ€mediated neurodegeneration as a component of VCID. Alzheimer's and Dementia, 2021, 17, .	0.8	О
14	Targeting VCAM1 to reduce neuroinflammation in ischemia-triggered vascular dementia Alzheimer's and Dementia, 2021, 17 Suppl 3, e053849.	0.8	0
15	Immunological mechanisms in poststroke dementia. Current Opinion in Neurology, 2020, 33, 30-36.	3.6	21
16	Development of a CD19 PET tracer for detecting B cells in a mouse model of multiple sclerosis. Journal of Neuroinflammation, 2020, 17, 275.	7.2	11
17	A longitudinal study of the post-stroke immune response and cognitive functioning: the StrokeCog study protocol. BMC Neurology, 2020, 20, 313.	1.8	4
18	Infection as a Stroke Risk Factor and Determinant of Outcome After Stroke. Stroke, 2020, 51, 3156-3168.	2.0	122

#	Article	IF	CITATIONS
19	The Local and Peripheral Immune Responses to Stroke: Implications for Therapeutic Development. Neurotherapeutics, 2020, 17, 414-435.	4.4	48
20	Immune responses to stroke: mechanisms, modulation, and therapeutic potential. Journal of Clinical Investigation, 2020, 130, 2777-2788.	8.2	344
21	Abstract WP142: Targeting VCAM1 to Reduce Acute and Chronic Neuroinflammation After Stroke. Stroke, 2020, 51, .	2.0	0
22	¹¹ C-DPA-713 Versus ¹⁸ F-GE-180: A Preclinical Comparison of Translocator Protein 18 kDa PET Tracers to Visualize Acute and Chronic Neuroinflammation in a Mouse Model of Ischemic Stroke. Journal of Nuclear Medicine, 2019, 60, 122-128.	5.0	46
23	Augmented \hat{l}^2 2-adrenergic signaling dampens the neuroinflammatory response following ischemic stroke and increases stroke size. Journal of Neuroinflammation, 2019, 16, 112.	7.2	30
24	Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1. Nature Medicine, 2019, 25, 988-1000.	30.7	260
25	A year-long immune profile of the systemic response in acute stroke survivors. Brain, 2019, 142, 978-991.	7.6	59
26	Abstract WP564: Deep Immune Profiling of the Post-Stroke Peripheral Immune Response Reveals Tri-phasic Response and Correlations With Long-Term Cognitive Outcomes. Stroke, 2019, 50, .	2.0	0
27	Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541, 481-487.	27.8	4,977
28	Imaging B Cells in a Mouse Model of Multiple Sclerosis Using ⁶⁴ Cu-Rituximab PET. Journal of Nuclear Medicine, 2017, 58, 1845-1851.	5.0	35
29	Does B lymphocyte-mediated autoimmunity contribute to post-stroke dementia?. Brain, Behavior, and Immunity, 2017, 64, 1-8.	4.1	41
30	Depression one year after hemorrhagic stroke is associated with late worsening of outcomes. NeuroRehabilitation, 2017, 41, 179-187.	1.3	31
31	Abstract WP114: High-fat Diet Leads to Increased Brain Inflammation and Worse Outcomes After Stroke in Mice. Stroke, 2017, 48, .	2.0	0
32	Antibodies to myelin basic protein are associated with cognitive decline after stroke. Journal of Neuroimmunology, 2016, 295-296, 9-11.	2.3	42
33	Astrocytes: Integrative Regulators of Neuroinflammation in Stroke and Other Neurological Diseases. Neurotherapeutics, 2016, 13, 685-701.	4.4	156
34	Stroke, Inflammation and the Immune Response: Dawn of a New Era. Neurotherapeutics, 2016, 13, 659-660.	4.4	19
35	Glial Fibrillary Acidic Protein-Expressing Glia in the Mouse Lung. ASN Neuro, 2015, 7, 175909141560163.	2.7	14
36	B-Lymphocyte-Mediated Delayed Cognitive Impairment following Stroke. Journal of Neuroscience, 2015, 35, 2133-2145.	3.6	257

3

#	Article	IF	CITATIONS
37	Metronidazole-Induced Encephalopathy: Not Always a Reversible Situation. Neurocritical Care, 2015, 22, 429-436.	2.4	40
38	Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood–brain barrier dysfunction. Neurobiology of Disease, 2015, 78, 115-125.	4.4	213
39	Ferumoxytol administration does not alter infarct volume or the inflammatory response to stroke in mice. Neuroscience Letters, 2015, 584, 236-240.	2.1	7
40	Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia, 2014, 62, 1227-1240.	4.9	160
41	A Mouse Model of Permanent Focal Ischemia: Distal Middle Cerebral Artery Occlusion. Methods in Molecular Biology, 2014, 1135, 103-110.	0.9	34
42	Astrocytic TGF- \hat{l}^2 Signaling Limits Inflammation and Reduces Neuronal Damage during Central Nervous System <i>Toxoplasma</i> Infection. Journal of Immunology, 2014, 193, 139-149.	0.8	113
43	Serum Neuron-Specific Enolase Levels from the Same Patients Differ Between Laboratories: Assessment of a Prospective Post-cardiac Arrest Cohort. Neurocritical Care, 2013, 19, 161-166.	2.4	38
44	Suppression of Inflammation with Conditional Deletion of the Prostaglandin E ₂ EP2 Receptor in Macrophages and Brain Microglia. Journal of Neuroscience, 2013, 33, 16016-16032.	3.6	74
45	A small molecule p75NTR ligand prevents cognitive deficits and neurite degeneration in an Alzheimer's mouse model. Neurobiology of Aging, 2013, 34, 2052-2063.	3.1	104
46	Chronic over-expression of TGF \hat{l}^21 alters hippocampal structure and causes learning deficits. Hippocampus, 2013, 23, 1198-1211.	1.9	25
47	Blood–brain barrier dysfunction–induced inflammatory signaling in brain pathology and epileptogenesis. Epilepsia, 2012, 53, 37-44.	5.1	111
48	Delayed Administration of a Small Molecule Tropomyosin-Related Kinase B Ligand Promotes Recovery After Hypoxic–Ischemic Stroke. Stroke, 2012, 43, 1918-1924.	2.0	63
49	The doubleâ€edged sword of inflammation after stroke: What sharpens each edge?. Annals of Neurology, 2012, 71, 729-731.	5.3	10
50	Stratification substantially reduces behavioral variability in the hypoxic–ischemic stroke model. Brain and Behavior, 2012, 2, 698-706.	2.2	15
51	Distal hypoxic stroke: A new mouse model of stroke with high throughput, low variability and a quantifiable functional deficit. Journal of Neuroscience Methods, 2012, 207, 31-40.	2.5	48
52	Abstract 3752: Performance Of Color ADC Maps As A Prognostic Tool In Comatose Post-cardiac Arrest Patients. Stroke, 2012, 43, .	2.0	0
53	Abstract 105: Diagnostic Accuracy of MRI in Spontaneous Intra-cerebral Hemorrhage (DASH) - Final Results. Stroke, 2012, 43, .	2.0	1
54	A Comparison of Cooling Techniques to Treat Cardiac Arrest Patients with Hypothermia. Stroke Research and Treatment, 2011, 2011, 1-6.	0.8	28

#	Article	IF	Citations
55	$TGF\hat{I}^2$ signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. Journal of Neuroinflammation, 2010, 7, 62.	7.2	200
56	Glia-dependent TGF- \hat{l}^2 signaling, acting independently of the TH17 pathway, is critical for initiation of murine autoimmune encephalomyelitis. Journal of Clinical Investigation, 2007, 117, 3306-3315.	8.2	108
57	Chronically Increased Transforming Growth Factor- \hat{l}^21 Strongly Inhibits Hippocampal Neurogenesis in Aged Mice. American Journal of Pathology, 2006, 169, 154-164.	3.8	124
58	Increased T Cell Recruitment to the CNS after Amyloid beta1-42 Immunization in Alzheimer's Mice Overproducing Transforming Growth Factor-beta1. Journal of Neuroscience, 2006, 26, 11437-11441.	3.6	46
59	Modelling neuroinflammatory phenotypes in vivo. Journal of Neuroinflammation, 2004, 1, 10.	7.2	66
60	P1-253 Chronically increased brain TGF beta-1 leads to hippocampal microgliosis and decreased hippocampal neurogenesis in adult mice. Neurobiology of Aging, 2004, 25, S168.	3.1	0
61	Molecular and Functional Dissection of TGFâ€Î²1â€Induced Cerebrovascular Abnormalities in Transgenic Mice. Annals of the New York Academy of Sciences, 2002, 977, 87-95.	3.8	17
62	Genetic Mapping of 21 Genes on Mouse Chromosome 11 Reveals Disruptions in Linkage Conservation with Human Chromosome 5. Genomics, 1997, 40, 114-122.	2.9	24
63	Construction of a 3-Mb Contig and Partial Transcript Map of the Central Region of Mouse Chromosome 11. Genomics, 1997, 45, 147-157.	2.9	9
64	A frameshift mutation in the mouse $\hat{l}\pm 1$ glycine receptor gene (Gira1) results in progressive neurological symptoms and juvenile death. Human Molecular Genetics, 1994, 3, 2025-2030.	2.9	114
65	A missense mutation in the gene encoding the $\hat{l}\pm 1$ subunit of the inhibitory glycine receptor in the spasmodic mouse. Nature Genetics, 1994, 7, 131-135.	21.4	207
66	Lysyl oxidase (Lox) maps between Grl-1 and Adrb-2 on mouse Chromosome 18. Mammalian Genome, 1993, 4, 177-178.	2.2	11
67	Genetic Mapping and Evaluation of Candidate Genes for Spasmodic, a Neurological Mouse Mutation with Abnormal Startle Response. Genomics, 1993, 17, 279-286.	2.9	43
68	Localization of the human Chromosome 5q genes Gabra-1, Gabrg-2, Il-4, Il-5, and Irf-1 on mouse Chromosome 11. Mammalian Genome, 1992, 3, 604-607.	2.2	20
69	Mouse Chromosome 11. Mammalian Genome, 1992, 3, S162-S181.	2.2	55
70	Localization of the panhypopituitary dwarf mutation (df) on mouse chromosome 11 in an intersubspecific backross. Genomics, 1991, 10, 515-526.	2.9	80
71	Mouse chromosome 11. Mammalian Genome, 1991, 1, S158-S191.	2.2	20