
## Charlynn Sher Lin Koh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8525137/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nanoplasmonic materials for surface-enhanced Raman scattering. , 2022, , 33-79.                                                                                                                                                     |      | 1         |
| 2  | Noninvasive and Point-of-Care Surface-Enhanced Raman Scattering (SERS)-Based Breathalyzer for Mass Screening of Coronavirus Disease 2019 (COVID-19) under 5 min. ACS Nano, 2022, 16, 2629-2639.                                     | 14.6 | 71        |
| 3  | Tunable Plasmonic Metacrystals: Self-assembly, Plasmonic Properties, and Applications in Surface-enhanced Raman Scattering. , 2022, , 175-232.                                                                                      |      | 0         |
| 4  | Inducing Ring Complexation for Efficient Capture and Detection of Small Gaseous Molecules Using SERS for Environmental Surveillance. Angewandte Chemie - International Edition, 2022, 61, .                                         | 13.8 | 15        |
| 5  | Intensifying Heat Using MOFâ€Isolated Graphene for Solarâ€Driven Seawater Desalination at 98%<br>Solarâ€toâ€Thermal Efficiency. Advanced Functional Materials, 2021, 31, 2008904.                                                   | 14.9 | 87        |
| 6  | Enantiospecific Molecular Fingerprinting Using Potential-Modulated Surface-Enhanced Raman<br>Scattering to Achieve Label-Free Chiral Differentiation. ACS Nano, 2021, 15, 1817-1825.                                                | 14.6 | 29        |
| 7  | Surface-Enhanced Raman Scattering (SERS) Taster: A Machine-Learning-Driven Multireceptor Platform for Multiplex Profiling of Wine Flavors. Nano Letters, 2021, 21, 2642-2649.                                                       | 9.1  | 66        |
| 8  | Plasmonic Nanoparticle-Metal–Organic Framework (NP–MOF) Nanohybrid Platforms for Emerging<br>Plasmonic Applications. , 2021, 3, 557-573.                                                                                            |      | 45        |
| 9  | ZIFâ€Induced dâ€Band Modification in a Bimetallic Nanocatalyst: Achieving Over 44 % Efficiency in the<br>Ambient Nitrogen Reduction Reaction. Angewandte Chemie, 2020, 132, 17145-17151.                                            | 2.0  | 31        |
| 10 | ZIFâ€Induced dâ€Band Modification in a Bimetallic Nanocatalyst: Achieving Over 44 % Efficiency in the<br>Ambient Nitrogen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 16997-17003.                     | 13.8 | 116       |
| 11 | A wearable solar-thermal-pyroelectric harvester: Achieving high power output using modified rGO-PEI and polarized PVDF. Nano Energy, 2020, 73, 104723.                                                                              | 16.0 | 40        |
| 12 | In Situ Differentiation of Multiplex Noncovalent Interactions Using SERS and Chemometrics. ACS Applied Materials & amp; Interfaces, 2020, 12, 33421-33427.                                                                          | 8.0  | 10        |
| 13 | Two-Photon-Assisted Polymerization and Reduction: Emerging Formulations and Applications. ACS Applied Materials & amp; Interfaces, 2020, 12, 10061-10079.                                                                           | 8.0  | 47        |
| 14 | Turning Water from a Hindrance to the Promotor of Preferential Electrochemical Nitrogen<br>Reduction. Chemistry of Materials, 2020, 32, 1674-1683.                                                                                  | 6.7  | 35        |
| 15 | Tracking Airborne Molecules from Afar: Three-Dimensional Metal–Organic<br>Framework-Surface-Enhanced Raman Scattering Platform for Stand-Off and Real-Time Atmospheric<br>Monitoring. ACS Nano, 2019, 13, 12090-12099.              | 14.6 | 87        |
| 16 | Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for<br>New Applications in Sensing, Microreaction, and Data Storage. Accounts of Chemical Research, 2019,<br>52, 1844-1854.           | 15.6 | 94        |
| 17 | Plasmonic-induced overgrowth of amorphous molybdenum sulfide on nanoporous gold: An ambient<br>synthesis method of hybrid nanoparticles with enhanced electrocatalytic activity. Journal of<br>Chemical Physics, 2019, 151, 244709. | 3.0  | 4         |
| 18 | Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chemical Society Reviews, 2019, 48, 731-756.                         | 38.1 | 468       |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach. Science Advances, 2018, 4, eaar3208.                                                                               | 10.3 | 333       |
| 20 | Plasmonic Hotspots in Air: An Omnidirectional Threeâ€Dimensional Platform for Standâ€Off Inâ€Air SERS<br>Sensing of Airborne Species. Angewandte Chemie - International Edition, 2018, 57, 5792-5796.                        | 13.8 | 41        |
| 21 | Plasmonic nose: integrating the MOF-enabled molecular preconcentration effect with a plasmonic array for recognition of molecular-level volatile organic compounds. Chemical Communications, 2018, 54, 2546-2549.            | 4.1  | 104       |
| 22 | Plasmonic Hotspots in Air: An Omnidirectional Threeâ€Dimensional Platform for Standâ€Off Inâ€Air SERS<br>Sensing of Airborne Species. Angewandte Chemie, 2018, 130, 5894-5898.                                               | 2.0  | 5         |
| 23 | Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels. Nanoscale, 2018, 10, 575-581.                                                                    | 5.6  | 47        |
| 24 | Concentrating Immiscible Molecules at Solid@MOF Interfacial Nanocavities to Drive an Inert<br>Gas–Liquid Reaction at Ambient Conditions. Angewandte Chemie, 2018, 130, 17304-17308.                                          | 2.0  | 7         |
| 25 | Concentrating Immiscible Molecules at Solid@MOF Interfacial Nanocavities to Drive an Inert<br>Gas–Liquid Reaction at Ambient Conditions. Angewandte Chemie - International Edition, 2018, 57,<br>17058-17062.                | 13.8 | 43        |
| 26 | Shape-dependent thermo-plasmonic effect of nanoporous gold at the nanoscale for ultrasensitive heat-mediated remote actuation. Nanoscale, 2018, 10, 16005-16012.                                                             | 5.6  | 19        |
| 27 | SERS―and Electrochemically Active 3D Plasmonic Liquid Marbles for Molecularâ€Level<br>Spectroelectrochemical Investigation of Microliter Reactions. Angewandte Chemie - International<br>Edition, 2017, 56, 8813-8817.       | 13.8 | 57        |
| 28 | SERS―and Electrochemically Active 3D Plasmonic Liquid Marbles for Molecular‣evel<br>Spectroelectrochemical Investigation of Microliter Reactions. Angewandte Chemie, 2017, 129,<br>8939-8943.                                | 2.0  | 16        |
| 29 | Direct Metal Writing and Precise Positioning of Gold Nanoparticles within Microfluidic Channels for SERS Sensing of Gaseous Analytes. ACS Applied Materials & Interfaces, 2017, 9, 39584-39593.                              | 8.0  | 42        |
| 30 | Microchemical Plant in a Liquid Droplet: Plasmonic Liquid Marble for Sequential Reactions and<br>Attomole Detection of Toxin at Microliter Scale. ACS Applied Materials & Interfaces, 2017, 9,<br>39635-39640.               | 8.0  | 34        |
| 31 | Driving CO <sub>2</sub> to a Quasi-Condensed Phase at the Interface between a Nanoparticle Surface<br>and a Metal–Organic Framework at 1 bar and 298 K. Journal of the American Chemical Society, 2017, 139,<br>11513-11518. | 13.7 | 55        |
| 32 | Nanoporous Gold Bowls: A Kinetic Approach to Control Open Shell Structures and Sizeâ€Tunable<br>Lattice Strain for Electrocatalytic Applications. Small, 2016, 12, 4531-4540.                                                | 10.0 | 36        |
| 33 | Air-stable plasmonic bubbles as a versatile three-dimensional surface-enhanced Raman scattering platform for bi-directional gas sensing. Chemical Communications, 0, , .                                                     | 4.1  | 1         |