
Jonathan Albo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/852504/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient photoelectrochemical conversion of CO2 to ethylene and methanol using a Cu cathode and TiO2 nanoparticles synthesized in supercritical medium as photoanode. Journal of Environmental Chemical Engineering, 2022, 10, 107441.	3.3	21
2	Copper(II) invigorated EHU-30 for continuous electroreduction of CO2 into value-added chemicals. Scientific Reports, 2022, 12, .	1.6	16
3	Use of an optofluidic microreactor and Cu nanoparticles synthesized in ionic liquid and embedded in TiO2 for an efficient photoreduction of CO2 to methanol. Chemical Engineering Journal, 2021, 404, 126643.	6.6	72
4	Enhanced visible-light photoreduction of CO ₂ to methanol over Mo ₂ C/TiO ₂ surfaces in an optofluidic microreactor. Reaction Chemistry and Engineering, 2021, 6, 304-312.	1.9	37
5	Porous TiO2 thin film-based photocatalytic windows for an enhanced operation of optofluidic microreactors in CO2 conversion. IScience, 2021, 24, 102654.	1.9	17
6	Continuous electroconversion of CO2 into formate using 2 nm tin oxide nanoparticles. Applied Catalysis B: Environmental, 2021, 297, 120447.	10.8	31
7	Bimetallic Cu-based hollow fibre electrodes for CO2 electroreduction. Catalysis Today, 2020, 346, 34-39.	2.2	55
8	Slowing down the deactivation of H-ZSM-5 zeolite catalyst in the methanol-to-olefin (MTO) reaction by P or Zn modifications. Catalysis Today, 2020, 348, 243-256.	2.2	59
9	CO2 capture in a hollow fiber membrane contactor coupled with ionic liquid: Influence of membrane wetting and process parameters. Separation and Purification Technology, 2020, 233, 115986.	3.9	79
10	Mathematical modeling of CO ₂ absorption with ionic liquids in a membrane contactor, study of absorption kinetics and influence of temperature. Journal of Chemical Technology and Biotechnology, 2020, 95, 1844-1857.	1.6	21
11	Continuous conversion of CO ₂ to alcohols in a TiO ₂ photoanodeâ€driven photoelectrochemical system. Journal of Chemical Technology and Biotechnology, 2020, 95, 1876-1882.	1.6	14
12	Modeling and Numerical Investigation of the Performance of Gas Diffusion Electrodes for the Electrochemical Reduction of Carbon Dioxide to Methanol. Industrial & Engineering Chemistry Research, 2020, 59, 20929-20942.	1.8	17
13	Electrochemical CO2 reduction reaction on cost-effective oxide-derived copper and transition metal–nitrogen–carbon catalysts. Current Opinion in Electrochemistry, 2020, 23, 65-73.	2.5	40
14	CO2 capture with room temperature ionic liquids; coupled absorption/desorption and single module absorption in membrane contactor. Chemical Engineering Science, 2020, 223, 115719.	1.9	52
15	Engineering Brain-Specific Pericytes from Human Pluripotent Stem Cells. Tissue Engineering - Part B: Reviews, 2020, 26, 367-382.	2.5	19
16	Post-combustion CO2 capture by coupling [emim] cation based ionic liquids with a membrane contactor; Pseudo-steady-state approach. International Journal of Greenhouse Gas Control, 2020, 99, 103076.	2.3	24
17	Challenges in SERS-based pesticide detection and plausible solutions. Journal of Agricultural and Food Chemistry, 2019, 67, 12341-12347.	2.4	62
18	Cu/Bi metal-organic framework-based systems for an enhanced electrochemical transformation of CO2 to alcohols. Journal of CO2 Utilization, 2019, 33, 157-165.	3.3	163

JONATHAN ALBO

#	Article	IF	CITATIONS
19	A straightforward route to obtain zirconium based metal-organic gels. Microporous and Mesoporous Materials, 2019, 284, 128-132.	2.2	46
20	Cu oxide/ZnO-based surfaces for a selective ethylene production from gas-phase CO2 electroconversion. Journal of CO2 Utilization, 2019, 31, 135-142.	3.3	97
21	Tailoring gas-phase CO ₂ electroreduction selectivity to hydrocarbons at Cu nanoparticles. Nanotechnology, 2018, 29, 014001.	1.3	92
22	Photoelectrochemical Reactors for CO ₂ Utilization. ACS Sustainable Chemistry and Engineering, 2018, 6, 15877-15894.	3.2	65
23	Synthesis of heterometallic metal–organic frameworks and their performance as electrocatalyst for CO ₂ reduction. RSC Advances, 2018, 8, 21092-21099.	1.7	108
24	Electrochemical Conversion of CO 2 to Value-Added Products. , 2018, , 29-59.		17
25	Solvent-free synthesis of heterometallic metal–organic frameworks for the electrocatalytic reduction of carbon dioxide. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e282-e282.	0.0	0
26	Methanol electrosynthesis from CO 2 at Cu 2 O/ZnO prompted by pyridine-based aqueous solutions. Journal of CO2 Utilization, 2017, 18, 164-172.	3.3	123
27	Productivity and Selectivity of Gasâ€Phase CO ₂ Electroreduction to Methane at Copper Nanoparticleâ€Based Electrodes. Energy Technology, 2017, 5, 922-928.	1.8	72
28	Modeling of a Microfluidic Electrochemical Cell for the Electro-Reduction of CO ₂ to CH ₃ OH. Journal of the Electrochemical Society, 2017, 164, E391-E400.	1.3	28
29	Copperâ€Based Metal–Organic Porous Materials for CO ₂ Electrocatalytic Reduction to Alcohols. ChemSusChem, 2017, 10, 1100-1109.	3.6	316
30	Electrochemical membrane reactors for the utilisation of carbon dioxide. Chemical Engineering Journal, 2016, 305, 104-120.	6.6	104
31	Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. Journal of Catalysis, 2016, 343, 232-239.	3.1	222
32	Atom efficiency in small molecule and macromolecule synthesis: general discussion. Faraday Discussions, 2015, 183, 97-123.	1.6	1
33	Capture agents, conversion mechanisms, biotransformations and biomimetics: general discussion. Faraday Discussions, 2015, 183, 463-487.	1.6	1
34	Towards the electrochemical conversion of carbon dioxide into methanol. Green Chemistry, 2015, 17, 2304-2324.	4.6	441
35	Ionic liquids in the electrochemical valorisation of CO ₂ . Energy and Environmental Science, 2015, 8, 2574-2599.	15.6	172
36	Production of methanol from CO2 electroreduction at Cu2O and Cu2O/ZnO-based electrodes in aqueous solution. Applied Catalysis B: Environmental, 2015, 176-177, 709-717.	10.8	249

Jonathan Albo

#	Article	IF	CITATIONS
37	CO ₂ reduction reactions: general discussion. Faraday Discussions, 2015, 183, 261-290.	1.6	6
38	Porous Al2O3/TiO2 tubes in combination with 1-ethyl-3-methylimidazolium acetate ionic liquid for CO2/N2 separation. Separation and Purification Technology, 2014, 122, 440-448.	3.9	78
39	Acetate based Supported Ionic Liquid Membranes (SILMs) for CO2 separation: Influence of the temperature. Journal of Membrane Science, 2014, 452, 277-283.	4.1	145
40	Arsenic Removal from Natural Waters by Adsorption or Ion Exchange: An Environmental Sustainability Assessment. Industrial & Engineering Chemistry Research, 2014, 53, 18920-18927.	1.8	50
41	Application of interfacially polymerized polyamide composite membranes to isopropanol dehydration: Effect of membrane pre-treatment and temperature. Journal of Membrane Science, 2014, 453, 384-393.	4.1	81
42	Structural Characterization of Thin-Film Polyamide Reverse Osmosis Membranes. Industrial & Engineering Chemistry Research, 2014, 53, 1442-1451.	1.8	83
43	Magnetic ionic liquids: synthesis, properties and applications. RSC Advances, 2014, 4, 40008-40018.	1.7	164
44	Synthesis and characterization of Magnetic Ionic Liquids (<scp>MILs</scp>) for <scp>CO₂</scp> separation. Journal of Chemical Technology and Biotechnology, 2014, 89, 866-871.	1.6	89
45	Gas transport properties of interfacially polymerized polyamide composite membranes under different pre-treatments and temperatures. Journal of Membrane Science, 2014, 449, 109-118.	4.1	95
46	Thin Ionic Liquid Membranes Based on Inorganic Supports with Different Pore Sizes. Industrial & Engineering Chemistry Research, 2014, 53, 8045-8056.	1.8	65
47	Permeability modulation of Supported Magnetic Ionic Liquid Membranes (SMILMs) by an external magnetic field. Journal of Membrane Science, 2013, 430, 56-61.	4.1	83
48	A group contribution method for the influence of the temperature in the viscosity of magnetic ionic liquids. Fluid Phase Equilibria, 2013, 360, 29-35.	1.4	20
49	Measuring Autonomy Support in University Students: the Spanish Version of the Learning Climate Questionnaire. Spanish Journal of Psychology, 2012, 15, 1466-1472.	1.1	22
50	Separation performance of CO2 through Supported Magnetic Ionic Liquid Membranes (SMILMs). Separation and Purification Technology, 2012, 97, 26-33.	3.9	98
51	Nonâ€dispersive absorption of CO ₂ in parallel and crossâ€flow membrane modules using EMISE. Journal of Chemical Technology and Biotechnology, 2012, 87, 1502-1507.	1.6	50
52	Absorption of coal combustion flue gases in ionic liquids using different membrane contactors. Desalination and Water Treatment, 2011, 27, 54-59.	1.0	51
53	Modelling and process integration of carbon dioxide capture using membrane contactors. Computer Aided Chemical Engineering, 2011, 29, 1261-1265.	0.3	0
54	Long-range magnetic ordering in magnetic ionic liquid: Emim[FeCl4]. Journal of Physics Condensed Matter, 2010, 22, 296006.	0.7	43

#	Article	IF	CITATIONS
55	Carbon Dioxide Capture from Flue Gases Using a Cross-Flow Membrane Contactor and the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethylsulfate. Industrial & Engineering Chemistry Research, 2010, 49, 11045-11051.	1.8	171