Kip Hodges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8524546/publications.pdf Version: 2024-02-01

KID HODCES

#	Article	IF	CITATIONS
1	An (U-Th)/He age for the small Monturaqui impact structure, Chile. Quaternary Geochronology, 2022, 67, 101217.	1.4	1
2	The Fine Art of Scientific Advocacy: A Tribute to Tom Lovejoy. Science Advances, 2022, 8, eabn9704.	10.3	0
3	Sediment provenance and silicic volcano-tectonic evolution of the northern East African Rift System from U/Pb and (U-Th)/He laser ablation double dating of detrital zircons. Earth and Planetary Science Letters, 2022, 580, 117375.	4.4	5
4	Evidence against a Late Heavy Bombardment event on Vesta. Earth and Planetary Science Letters, 2022, 590, 117576.	4.4	5
5	Interpreting and reporting 40Ar/39Ar geochronologic data. Bulletin of the Geological Society of America, 2021, 133, 461-487.	3.3	102
6	Rapid cooling during late-stage orogenesis and implications for the collapse of the Scandian retrowedge, northern Scotland. Journal of the Geological Society, 2021, 178, .	2.1	6
7	Dendritic reidite from the Chesapeake Bay impact horizon, Ocean Drilling Program Site 1073 (offshore) Tj ETQq1	1 0.78431 4.4	L4 _, rgBT /Ove
8	Arctic response to a warming world. Science, 2021, 371, 1328.1-1328.	12.6	0
9	Exploiting Thermochronology to Quantify Exhumation Histories and Patterns of Uplift Along the Margins of Tibet. Frontiers in Earth Science, 2021, 9, .	1.8	1
10	In Science Journals. Science, 2021, 374, 704-706.	12.6	0
11	An Evaluation of Erosionalâ€Geodynamic Thresholds for Rapid Orogenic Denudation. Journal of Geophysical Research: Solid Earth, 2021, 126, .	3.4	1
12	Climate controls on erosion in tectonically active landscapes. Science Advances, 2020, 6, .	10.3	75
13	Mapping radiation damage zoning in zircon using Raman spectroscopy: Implications for zircon chronology. Chemical Geology, 2020, 538, 119494.	3.3	20
14	Sampling the Early Solar System. Science, 2020, 370, 672-673.	12.6	3
15	How air pollution may influence the course of pandemics. Science Advances, 2020, 6, .	10.3	3
16	Coral reef islands adjust to rising sea. Science, 2020, 368, 1201.1-1201.	12.6	1
17	Pandemics and the global environment. Science Advances, 2020, 6, .	10.3	12
18	Helium diffusion in zircon: Effects of anisotropy and radiation damage revealed by laser depth profiling. Geochimica Et Cosmochimica Acta, 2020, 274, 45-62.	3.9	14

#	Article	IF	CITATIONS
19	Air contaminants act differently indoors. Science, 2020, 367, 864.5-865.	12.6	0
20	Missing freshwater found off Hawai'i. Science, 2020, 370, 1053.23-1055.	12.6	0
21	(Uâ€Th)/He zircon dating of Chesapeake Bay distal impact ejecta from ODP site 1073. Meteoritics and Planetary Science, 2019, 54, 1840-1852.	1.6	6
22	Characterization of the rhyolite of Bodie Hills and 40Ar/39Ar intercalibration with Ar mineral standards. Chemical Geology, 2019, 525, 282-302.	3.3	19
23	Knowing when to stand down and when to stand up. Science Advances, 2019, 5, eaaz5011.	10.3	0
24	Imagining a new era of planetary field geology. Science Advances, 2019, 5, eaaz2484.	10.3	3
25	Consequences of nuclear war. Science, 2019, 366, 68.8-69.	12.6	0
26	Helium Diffusion in Natural Xenotime. Geochemistry, Geophysics, Geosystems, 2019, 20, 417-433.	2.5	6
27	Modeling groundwater depletion. Science, 2019, 364, 1146.18-1148.	12.6	0
28	Navigating transformation of biodiversity and climate. Science Advances, 2019, 5, eaba0969.	10.3	6
29	Exploring the variability of argon loss in Apollo 17 impact melt rock 77135 using highâ€spatial resolution40Ar/39Ar geochronology. Meteoritics and Planetary Science, 2019, 54, 721-739.	1.6	4
30	U/Pb and (U-Th-Sm)/He "double―dating of detrital apatite by laser ablation: A critical evaluation. Chemical Geology, 2019, 506, 40-50.	3.3	12
31	Volcanic eruptions in the deep sea. Science, 2018, 359, 172.6-173.	12.6	0
32	The thermal evolution of Chinese central Tianshan and its implications: Insights from multi-method chronometry. Tectonophysics, 2018, 722, 536-548.	2.2	40
33	New moon rising. Science, 2018, 362, 41.7-42.	12.6	0
34	Comment on â€~Distinguishing slow cooling versus multiphase cooling and heating in zircon and apatite (U-Th)/He datasets: The case of the McClure Mountain syenite standard' by Weisberg, Metcalf, and Flowers. Chemical Geology, 2018, 498, 150-152.	3.3	6
35	Structural relationship between the Karakoram and Longmu Co fault systems, southwestern Tibetan Plateau, revealed by ASTER remote sensing. , 2018, 14, 1837-1850.		2
36	Colder Siberian winters in a warming world. Science, 2018, 361, 375.6-376.	12.6	0

#	Article	IF	CITATIONS
37	Reconciling sea surface temperature records. Science, 2017, 355, 35.2-37.	12.6	0
38	Subduction undone. Nature, 2017, 543, 44-45.	27.8	2
39	Exploration telepresence: A strategy for optimizing scientific research at remote space destinations. Science Robotics, 2017, 2, .	17.6	21
40	Human impacts on rainfall distribution. Science, 2017, 356, 918.8-919.	12.6	0
41	Thermochronologic constraints on the slip history of the South Tibetan detachment system in the Everest region, southern Tibet. Earth and Planetary Science Letters, 2017, 459, 105-117.	4.4	32
42	Empirical constraints on the effects of radiation damage on helium diffusion in zircon. Geochimica Et Cosmochimica Acta, 2017, 218, 308-322.	3.9	44
43	Diffusive loss of argon in response to melt vein formation in polygenetic impact melt breccias. Journal of Geophysical Research E: Planets, 2017, 122, 1650-1671.	3.6	2
44	A review of the handheld X-ray fluorescence spectrometer as a tool for field geologic investigations on Earth and in planetary surface exploration. Applied Geochemistry, 2016, 72, 77-87.	3.0	114
45	Crustal Decoupling in Collisional Orogenesis: Examples from the East Greenland Caledonides and Himalaya. Annual Review of Earth and Planetary Sciences, 2016, 44, 685-708.	11.0	20
46	ArAR — A software tool to promote the robust comparison of K–Ar and 40Ar/39Ar dates published using different decay, isotopic, and monitor-age parameters. Chemical Geology, 2016, 440, 148-163.	3.3	35
47	Diachroneity of the Clearwater West and Clearwater East impact structures indicated by the (U–Th)/He dating method. Earth and Planetary Science Letters, 2016, 453, 56-66.	4.4	11
48	Mapping the local Milky Way. Science, 2016, 353, 1509.1-1509.	12.6	1
49	Pleistocene onset of rapid, punctuated exhumation in the eastern Central Range of the Taiwan orogenic belt. Geology, 2016, 44, 719-722.	4.4	46
50	Active shortening within the Himalayan orogenic wedge implied by the 2015 Gorkha earthquake. Nature Geoscience, 2016, 9, 711-716.	12.9	84
51	Geological significance of ⁴⁰ Ar/ ³⁹ Ar mica dates across a mid-crustal continental plate margin, Connemara (Grampian orogeny, Irish Caledonides), and implications for the evolution of lithospheric collisions. Canadian Journal of Earth Sciences, 2016, 53, 1258-1278.	1.3	12
52	Integrated single crystal laser ablation U/Pb and (U–Th)/He dating of detrital accessory minerals – Proof-of-concept studies of titanites and zircons from the Fish Canyon tuff. Geochimica Et Cosmochimica Acta, 2016, 178, 106-123.	3.9	34
53	In situ development of highâ€elevation, lowâ€relief landscapes via duplex deformation in the Eastern Himalayan hinterland, Bhutan. Journal of Geophysical Research F: Earth Surface, 2016, 121, 294-319.	2.8	45
54	Zircon and apatite (U-Th)/He evidence for Paleogene and Neogene extension in the Southern Snake Range, Nevada, USA. Tectonics, 2015, 34, 2142-2164.	2.8	13

#	Article	IF	CITATIONS
55	Age and structure of the Shyok suture in the Ladakh region of northwestern India: Implications for slip on the Karakoram fault system. Tectonics, 2015, 34, 2011-2033.	2.8	68
56	Refining lunar impact chronology through high spatial resolution ⁴⁰ Ar/ ³⁹ Ar dating of impact melts. Science Advances, 2015, 1, e1400050.	10.3	20
57	Synchronous N-S and E-W extension at the Tibet-to-Himalaya transition in NW Bhutan. Tectonics, 2015, 34, 1375-1395.	2.8	42
58	Constraints on the tectonic and landscape evolution of the Bhutan Himalaya from thermochronometry. Tectonics, 2015, 34, 1329-1347.	2.8	31
59	Flexural bending of southern Tibet in a retro foreland setting. Scientific Reports, 2015, 5, 12076.	3.3	30
60	Forearc hyperextension dismembered the south Tibetan ophiolites. Geology, 2015, 43, 475-478.	4.4	129
61	Evidence for Pleistocene Low-Angle Normal Faulting in the Annapurna-Dhaulagiri Region, Nepal. Journal of Geology, 2015, 123, 133-151.	1.4	16
62	Thermochronology in Orogenic Systems. , 2014, , 281-308.		25
63	5.15 The Influence of Middle and Lower Crustal Flow on the Landscape Evolution of Orogenic Plateaus: Insights from the Himalaya and Tibet. , 2013, , 350-369.		3
64	Evidence for Plioâ€Pleistocene northâ€south extension at the southern margin of the Tibetan Plateau, Nyalam region. Tectonics, 2013, 32, 317-333.	2.8	27
65	Desert Research and Technology Studies (DRATS) 2010 science operations: Operational approaches and lessons learned for managing science during human planetary surface missions. Acta Astronautica, 2013, 90, 224-241.	3.2	37
66	Laser (Uâ€Th)/He thermochronology of detrital zircons as a tool for studying surface processes in modern catchments. Journal of Geophysical Research F: Earth Surface, 2013, 118, 1333-1341.	2.8	37
67	Metamorphic constraints on the character and displacement of the South Tibetan fault system, central Bhutanese Himalaya. Lithosphere, 2013, 5, 67-81.	1.4	24
68	Evidence of pre-Oligocene emergence of the Indian passive margin and the timing of collision initiation between India and Eurasia. Lithosphere, 2013, 5, 501-506.	1.4	13
69	Differential Movement across Byrd Glacier, Antarctica, as indicated by Apatite (U–Th)/He thermochronology and geomorphological analysis. Geological Society Special Publication, 2013, 381, 37-43.	1.3	2
70	Evidence for Pliocene–Quaternary normal faulting in the hinterland of the Bhutan Himalaya. Lithosphere, 2013, 5, 438-449.	1.4	20
71	Impact thermochronology and the age of Haughton impact structure, Canada. Geophysical Research Letters, 2013, 40, 3836-3840.	4.0	31
72	Desert FLEAS IV: Results from Field Tests of EVA/Robotic Collaborative Planetary Geological Exploration. , 2013, , .		0

#	Article	IF	CITATIONS
73	Large normal-sense displacement on the South Tibetan fault system in the eastern Himalaya. Geology, 2012, 40, 971-974.	4.4	32
74	Solving Complex Problems. Science, 2012, 338, 1164-1165.	12.6	4
75	Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 2012, 5, 640-645.	12.9	472
76	Variable shortening rates in the eastern Himalayan thrust belt, Bhutan: Insights from multiple thermochronologic and geochronologic data sets tied to kinematic reconstructions. Tectonics, 2012, 31, .	2.8	79
77	Results from Desert FLEAS III: Field Tests of EVA/Robotic Collaboration for Planetary Exploration. , 2012, , .		4
78	(Uâ€Th)/He dating of terrestrial impact structures: The Manicouagan example. Geochemistry, Geophysics, Geosystems, 2011, 12, .	2.5	33
79	Detrital zircon and apatite (U-Th)/He geochronology of intercalated baked sediments: A new approach to dating young basalt flows. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	10
80	Laser depth profiling studies of helium diffusion in Durango fluorapatite. Geochimica Et Cosmochimica Acta, 2011, 75, 2409-2419.	3.9	26
81	Robotic recon for human exploration: Method, assessment, and lessons learned. , 2011, , .		5
82	A new paradigm for advanced planetary field geology developed through analog experiments on Earth. , 2011, , .		19
83	Motives, methods, and essential preparation for planetary field geology on the Moon and Mars. , 2011, , .		7
84	Field Analogue Simulations Investigating EVA/Robotic Collaboration in Lunar Exploration. , 2011, , .		8
85	Robotic Follow-up for Human Exploration. , 2010, , .		8
86	Assessment of robotic recon for human exploration of the Moon. Acta Astronautica, 2010, 67, 1176-1188.	3.2	26
87	Regional incision of the eastern margin of the Tibetan Plateau. Lithosphere, 2010, 2, 50-63.	1.4	197
88	Developing Technologies and Techniques for Robot-Augmented Human Surface Science. , 2010, , .		3
89	Improved confidence in (Uâ€Th)/He thermochronology using the laser microprobe: An example from a Pleistocene leucogranite, Nanga Parbat, Pakistan. Geochemistry, Geophysics, Geosystems, 2009, 10, . 	2.5	22
90	Quantifying canyon incision and Andean Plateau surface uplift, southwest Peru: A thermochronometer and numerical modeling approach. Journal of Geophysical Research, 2009, 114, .	3.3	53

#	Article	IF	CITATIONS
91	Robotic Scouting for Human Exploration. , 2009, , .		7
92	Data reporting norms for 40Ar/39Ar geochronology. Quaternary Geochronology, 2009, 4, 346-352.	1.4	97
93	Late Cenozoic structural and tectonic development of the western margin of the central Andean Plateau in southwest Peru. Tectonics, 2009, 28, .	2.8	29
94	Correction to "Late Cenozoic structural and tectonic development of the western margin of the central Andean Plateau in southwest Peru― Tectonics, 2009, 28, n/a-n/a.	2.8	0
95	Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience, 2008, 1, 875-880.	12.9	604
96	A Late Miocene acceleration of exhumation in the Himalayan crystalline core. Earth and Planetary Science Letters, 2008, 269, 1-10.	4.4	18
97	Uplift of the western margin of the Andean plateau revealed from canyon incision history, southern Peru. Geology, 2007, 35, 523.	4.4	142
98	Plio-Quaternary exhumation history of the central Nepalese Himalaya: 2. Thermokinematic and thermochronometer age prediction model. Tectonics, 2007, 26, n/a-n/a.	2.8	93
99	Proterozoic metamorphism and cooling in the southern Lake Superior region, North America and its bearing on crustal evolution. Precambrian Research, 2007, 157, 106-126.	2.7	34
100	Topography, exhumation pathway, age uncertainties, and the interpretation of thermochronometer data. Tectonics, 2007, 26, .	2.8	44
101	Students' Perceptions of Terrascope, A Project-Based Freshman Learning Community. Journal of Science Education and Technology, 2007, 16, 349-364.	3.9	17
102	A synthesis of the Channel Flow-Extrusion hypothesis as developed for the Himalayan-Tibetan orogenic system. Geological Society Special Publication, 2006, 268, 71-90.	1.3	43
103	A comparative study of detrital mineral and bedrock age-elevation methods for estimating erosion rates. Journal of Geophysical Research, 2006, 111, n/a-n/a.	3.3	31
104	Multistage exhumation and juxtaposition of lower continental crust in the western Canadian Shield: Linking high-resolution U-Pb and40Ar/39Ar thermochronometry with pressure-temperature-deformation paths. Tectonics, 2006, 25, n/a-n/a.	2.8	55
105	Neotectonics of the central Nepalese Himalaya: Constraints from geomorphology, detrital40Ar/39Ar thermochronology, and thermal modeling. Tectonics, 2006, 25, n/a-n/a.	2.8	83
106	Thermochronology of mineral grains in the Red and Mekong Rivers, Vietnam: Provenance and exhumation implications for Southeast Asia. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	80
107	Climate change and Late Pliocene acceleration of erosion in the Himalaya. Earth and Planetary Science Letters, 2006, 252, 107-118.	4.4	107
108	Laser microprobe (U–Th)/He geochronology. Geochimica Et Cosmochimica Acta, 2006, 70, 3031-3039.	3.9	45

#	Article	IF	CITATIONS
109	Climate and the Evolution of Mountains. Scientific American, 2006, 295, 72-79.	1.0	18
110	Laser ablation 40Ar/39Ar dating of metamorphic fabrics in the Caledonides of north Ireland. Journal of the Geological Society, 2006, 163, 337-345.	2.1	6
111	Downstream development of a detrital cooling-age signal: Insights from ⁴⁰ Ar/ ³⁹ Ar muscovite thermochronology in the Nepalese Himalaya. , 2006, , .		16
112	Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature, 2005, 434, 1008-1011.	27.8	269
113	Timescales of melt generation and the thermal evolution of the Himalayan metamorphic core, Everest region, eastern Nepal. Contributions To Mineralogy and Petrology, 2005, 149, 1-21.	3.1	81
114	9. ⁴⁰ Ar/ ³⁹ Ar Thermochronology of Detrital Minerals. , 2005, , 239-258.		7
115	40Ar/39Ar Thermochronology of Detrital Minerals. Reviews in Mineralogy and Geochemistry, 2005, 58, 239-257.	4.8	55
116	He diffusion in monazite: Implications for (U-Th)/He thermochronometry. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	22
117	U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite: Insights regarding the impact of recoil redistribution of radiogenic 4He on (U–Th)/He thermochronology. Chemical Geology, 2005, 219, 261-274.	3.3	63
118	The use of detrital mineral cooling ages to evaluate steady state assumptions in active orogens: An example from the central Nepalese Himalaya. Tectonics, 2005, 24, n/a-n/a.	2.8	96
119	Thermochronology of the modern Indus River bedload: New insight into the controls on the marine stratigraphic record. Tectonics, 2004, 23, n/a-n/a.	2.8	39
120	Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth and Planetary Science Letters, 2004, 220, 379-389.	4.4	270
121	Tectonometamorphic evolution of the Himalayan metamorphic core between the Annapurna and Dhaulagiri, central Nepal. Journal of Metamorphic Geology, 2003, 14, 635-656.	3.4	260
122	Pressure–temperature–time evolution of the Central East Greenland Caledonides: quantitative constraints on crustal thickening and synorogenic extension. Journal of Metamorphic Geology, 2003, 21, 875-897.	3.4	17
123	Modelling detrital cooling-age populations: insights from two Himalayan catchments. Basin Research, 2003, 15, 305-320.	2.7	80
124	Geochronology and Thermochronology in Orogenic Systems. , 2003, , 263-292.		63
125	Has focused denudation sustained active thrusting at the Himalayan topographic front?. Geology, 2003, 31, 861.	4.4	332
126	Multistage extensional evolution of the central East Greenland Caledonides. Tectonics, 2002, 21, 12-1-12-28.	2.8	16

#	Article	IF	CITATIONS
127	Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from40Ar/39Ar and (U-Th)/He thermochronology. Tectonics, 2002, 21, 1-1-1-20.	2.8	484
128	Implications of middle Eocene epizonal plutonism for the unroofing history of the Bitterroot metamorphic core complex, Idaho-Montana. Bulletin of the Geological Society of America, 2002, 114, 448-461.	3.3	16
129	Geologic constraints on middle-crustal behavior during broadly synorogenic extension in the central East Greenland Caledonides. International Journal of Earth Sciences, 2002, 91, 187-208.	1.8	37
130	Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics, 2001, 20, 799-809.	2.8	226
131	Crustal thickening leading to exhumation of the Himalayan Metamorphic core of central Nepal: Insight from U-Pb Geochronology and40Ar/39Ar Thermochronology. Tectonics, 2001, 20, 729-747.	2.8	234
132	Syncontractional extension and exhumation of deep crustal rocks in the east Greenland Caledonides. Tectonics, 2001, 20, 58-77.	2.8	54
133	Neotectonics of the Thakkhola graben and implications for recent activity on the South Tibetan fault system in the central Nepal Himalaya. Bulletin of the Geological Society of America, 2001, 113, 222-240.	3.3	114
134	Monazite–xenotime thermochronometry: methodology and an example from the Nepalese Himalaya. Contributions To Mineralogy and Petrology, 2001, 141, 233-247.	3.1	72
135	U–Pb and 40Ar/39Ar constraints on the Fjord Region Detachment Zone: a long-lived extensional fault in the central East Greenland Caledonides. Journal of the Geological Society, 2000, 157, 795-809.	2.1	49
136	Depositional and tectonic evolution of a supradetachment basin: 40 Ar/39 Ar geochronology of the Nova Formation, Panamint Range, California. Basin Research, 2000, 12, 19-30.	2.7	18
137	Dating cleavage formation in slates and phyllites with the 40Ar/39Ar laser microprobe: an example from the western New England Appalachians, USA. Terra Nova, 2000, 12, 264-271.	2.1	20
138	Tectonics of the Himalaya and southern Tibet from two perspectives. Bulletin of the Geological Society of America, 2000, 112, 324-350.	3.3	1,022
139	40Ar/39Ar geochronology of flood basalts from the Kerguelen Archipelago, southern Indian Ocean: implications for Cenozoic eruption rates of the Kerguelen plume. Earth and Planetary Science Letters, 2000, 174, 313-328.	4.4	74
140	Geochronological constraints on the magmatic, metamorphic and thermal evolution of the Connemara Caledonides, western Ireland. Journal of the Geological Society, 1999, 156, 1217-1230.	2.1	92
141	Metamorphism, Melting, and Extension: Age Constraints from the High Himalayan Slab of Southeast Zanskar and Northwest Lahaul. Journal of Geology, 1999, 107, 473-495.	1.4	152
142	Short-lived continental magmatic arc at Connemara, western Irish Caledonides: Implications for the age of the Grampian orogeny. Geology, 1999, 27, 27.	4.4	124
143	The effects of accretion, erosion and radiogenic heat on the metamorphic evolution of collisional orogens. Journal of Metamorphic Geology, 1999, 17, 349-366.	3.4	89
144	Neogene cooling and exhumation of upper-amphibolite-facies `whiteschists' in the southwest Pamir Mountains, Tajikistan. Tectonophysics, 1999, 305, 325-337.	2.2	24

#	Article	IF	CITATIONS
145	Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges: Comment and Reply. Geology, 1999, 27, 286.	4.4	0
146	Evidence for rapid displacement on Himalayan normal faults and the importance of tectonic denudation in the evolution of mountain ranges. Geology, 1998, 26, 483.	4.4	124
147	The thermal structure of collisional orogens as a response to accretion, erosion, and radiogenic heating. Journal of Geophysical Research, 1998, 103, 15287-15302.	3.3	127
148	Contrasting Oligocene and Miocene thermal histories from the hanging wall and footwall of the South Tibetan detachment in the central Himalaya from40Ar/39Ar thermochronology, Marsyandi Valley, central Nepal. Tectonics, 1998, 17, 726-740.	2.8	67
149	The thermodynamics of Himalayan orogenesis. Geological Society Special Publication, 1998, 138, 7-22.	1.3	21
150	Shisha Pangma Leucogranite, South Tibetan Himalaya: Field Relations, Geochemistry, Age, Origin, and Emplacement. Journal of Geology, 1997, 105, 295-318.	1.4	345
151	Petrological and geochronological constraints on regional metamorphism along the northern border of the Bitterroot batholith. Journal of Metamorphic Geology, 1997, 15, 753-764.	3.4	26
152	Tectonic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics, 1996, 15, 1264-1291.	2.8	445
153	The Interdependence of Deformational and Thermal Processes in Mountain Belts. Science, 1996, 273, 637-639.	12.6	68
154	Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya. Bulletin of the Geological Society of America, 1996, 108, 904-911.	3.3	346
155	Limits on the tectonic significance of rapid cooling events in extensional settings: Insights from the Bitterroot metamorphic core complex, Idaho-Montana: Comment and Reply. Geology, 1995, 23, 1051.	4.4	4
156	New constraints on the age of the Manaslu leucogranite: Evidence for episodic tectonic denudation in the central Himalaya: Comment and Reply. Geology, 1995, 23, 478.	4.4	16
157	Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east–west extension. Nature, 1995, 374, 49-52.	27.8	499
158	>Mesozoic and Cenozoic extension recorded by metamorphic rocks in the Funeral Mountains, California. Bulletin of the Geological Society of America, 1995, 107, 1063-1076.	3.3	43
159	thermochronology of isotopically zoned micas: Insights from the southwestern USA proterozoic orogen. Geochimica Et Cosmochimica Acta, 1995, 59, 3205-3220.	3.9	56
160	New constraints on the age of the Manaslu leucogranite: Evidence for episodic tectonic denudation in the central Himalayas. Geology, 1994, 22, 559.	4.4	104
161	40Ar/39Ar age gradients in micas from a high-temperature-low-pressure metamorphic terrain: Evidence for very slow cooling and implications for the interpretation of age spectra. Geology, 1994, 22, 55.	4.4	123
162	Empirical evaluation of solution models for pelitic minerals and their application to thermobarometry. Contributions To Mineralogy and Petrology, 1994, 117, 56-65.	3.1	15

#	Article	IF	CITATIONS
163	Thermobarometric and40Ar/39Ar geochronologic constraints on Eohimalayan metamorphism in the Dinggy� area, southern Tibet. Contributions To Mineralogy and Petrology, 1994, 117, 151-163.	3.1	80
164	Pressure-temperature-time paths from two-dimensional thermal models: Prograde, retrograde, and inverted metamorphism. Tectonics, 1994, 13, 17-44.	2.8	104
165	Role of horizontal thermal conduction and finite time thrust emplacement in simulation of pressure-temperature-time paths. Earth and Planetary Science Letters, 1994, 123, 49-60.	4.4	24
166	Limits on the tectonic significance of rapid cooling events in extensional settings: Insights from the Bitterroot metamorphic core complex, Idaho-Montana. Geology, 1994, 22, 1007.	4.4	26
167	The metamorphic signature of contemporaneous extension and shortening in the central Himalayan orogen: data from the Nyalam transect, southern Tibet. Journal of Metamorphic Geology, 1993, 11, 721-737.	3.4	121
168	Laser 40Ar/39Ar Evaluation of Slow Cooling and Episodic Loss of 40Ar from a Sample of Polymetamorphic Muscovite. Science, 1993, 261, 1721-1723.	12.6	55
169	Age of Tertiary extension in the Bitterroot metamorphic core complex, Montana and Idaho. Geology, 1993, 21, 161.	4.4	18
170	Extension in the Cretaceous Sevier orogen, North American Cordillera. Bulletin of the Geological Society of America, 1992, 104, 560.	3.3	104
171	A structural analysis of the Main Central Thrust zone, Langtang National Park, central Nepal Himalaya. Bulletin of the Geological Society of America, 1992, 104, 1389-1402.	3.3	91
172	The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous With and Parallel to Shortening in a Collisional Mountain Belt. Special Paper of the Geological Society of America, 1992, , 1-41.	0.5	454
173	Late Cretaceous extensional unroofing in the Funeral Mountains metamorphic core complex, California. Geology, 1992, 20, 519.	4.4	30
174	Simultaneous Miocene Extension and Shortening in the Himalayan Orogen. Science, 1992, 258, 1466-1470.	12.6	330
175	Thermal evolution of a portion of the Sevier Hinterland: The Northern Ruby Mountainsâ€East Humboldt Range and Wood Hills, northeastern Nevada. Tectonics, 1992, 11, 154-164.	2.8	56
176	Constraints on unroofing rates in the High Himalaya, eastern Nepal. Tectonics, 1991, 10, 287-298.	2.8	32
177	An Early Pliocene thermal disturbance of the main central thrust, central Nepal: Implications for Himalayan tectonics. Journal of Geophysical Research, 1991, 96, 8475-8500.	3.3	102
178	Temperature and pressure of mylonitization in a Tertiary extensional shear zone, Ruby Mountains-East Humboldt Range, Nevada: Tectonic implications. Geology, 1991, 19, 82.	4.4	34
179	Pressure-Temperature-Time Paths. Annual Review of Earth and Planetary Sciences, 1991, 19, 207-236.	11.0	84
180	Miocene to recent structural development of an extensional accommodation zone, northeastern Baja California, Mexico. Journal of Structural Geology, 1990, 12, 315-328.	2.3	38

#	Article	IF	CITATIONS
181	Chapter 18: Constraints on the kinematics and timing of late Miocene-Recent extension between the Panamint and Black Mountains, southeastern California. Memoir of the Geological Society of America, 1990, , 363-376.	0.5	15
182	Chapter 19: Structural unroofing of the central Panamint Mountains, Death Valley region, southeastern California. Memoir of the Geological Society of America, 1990, , 377-390.	0.5	20
183	The Kangmar Dome: A Metamorphic Core Complex in Southern Xizang (Tibet). Science, 1990, 250, 1552-1556.	12.6	128
184	Petrologic constraints on the unroofing history of the Funeral Mountain Metamorphic Core Complex, California. Journal of Geophysical Research, 1990, 95, 8437-8445.	3.3	29
185	Preâ€Pliocene Extension around the Gulf of California and the transfer of Baja California to the Pacific Plate. Tectonics, 1989, 8, 99-115.	2.8	350
186	Evolution of extensional basins and basin and range topography west of Death Valley, California. Tectonics, 1989, 8, 453-467.	2.8	44
187	Comment and Reply on "Possible thermal buffering by crustal anatexis in collisional orogens: Thermobarometric evidence from the Nepalese Himalaya". Geology, 1989, 17, 574.	4.4	1
188	Thermal evolution of the Greater Himalaya, Garhwal, India. Tectonics, 1988, 7, 583-600.	2.8	101
189	Thermal modeling of extensional tectonics: Application to pressureâ€ŧemperatureâ€ŧime histories of metamorphic rocks. Tectonics, 1988, 7, 947-957.	2.8	116
190	The Middle Mountain shear zone, southern Idaho: Kinematic analysis of an early Tertiary high-temperature detachment. Bulletin of the Geological Society of America, 1988, 100, 96-103.	3.3	39
191	Possible thermal buffering by crustal anatexis in collisional orogens: Thermobarometric evidence from the Nepalese Himalaya. Geology, 1988, 16, 707.	4.4	75
192	Footwall structural evolution of the Tucki Mountain detachment system, Death Valley region, southeastern California. Geological Society Special Publication, 1987, 28, 393-408.	1.3	15
193	Geology of Panamint Valley ―Saline Valley Pullâ€Apart System, California: Palinspastic evidence for lowâ€angle geometry of a Neogene Rangeâ€Bounding Fault. Journal of Geophysical Research, 1987, 92, 10422-10426.	3.3	121
194	Comment and Reply on "P-T paths from garnet zoning: A new technique for deciphering tectonic processes in crystalline terranes― Geology, 1985, 13, 81.	4.4	0
195	Geologic thermobarometry of retrograded metamorphic rocks: An indication of the uplift trajectory of a portion of the northern Scandinavian caledonides. Journal of Geophysical Research, 1984, 89, 7077-7090.	3.3	81
196	A technique for analyzing the thermal and uplift histories of eroding orogenic belts: A Scandinavian example. Journal of Geophysical Research, 1984, 89, 7091-7106.	3.3	44
197	P-T paths from garnet zoning: A new technique for deciphering tectonic processes in crystalline terranes. Geology, 1984, 12, 87.	4.4	172
198	Pogallo Line, South Alps, northern Italy: An intermediate crystal level, low-angle normal fault?. Geology, 1984, 12, 151.	4.4	50

#	Article	IF	CITATIONS
199	Structural evolution of an Aâ€ŧype subduction zone, lofotenâ€Rombak Area, northern Scandinavian Caledonides. Tectonics, 1982, 1, 441-462.	2.8	68
200	Limitations on the role of pore pressure in gravity gliding. Bulletin of the Geological Society of America, 1982, 93, 606.	3.3	11
201	Comment and Reply on â€~High fluid pressure, isothermal surfaces, and the initiation of nappe movement'. Geology, 1980, 8, 405.	4.4	2
202	Trace Elements in Continental-Margin Magmatism: Part II. Trace Elements in Ben Ghnema Batholith and Nature of the Precambrian Crust in Central North Africa. Bulletin of the Geological Society of America, 1980, 91, 1742-1788.	3.3	8
203	Trace elements in continental-margin magmatism: Part II. Trace elements in Ben Ghnema batholith and nature of the Precambrian crust in central North Africa: Summary. Bulletin of the Geological Society of America, 1980, 91, 445.	3.3	6
204	Geologic Traverse Planning for Planetary EVA. , 0, , .		22
205	Electron Microprobe Chemical Dating of Uraninite as a Reconnaissance Tool for Leucogranite Geochronology. Nature Precedings, 0, , .	0.1	6