
KateÅĦa MacÃ;kovÃ;

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8524536/publications.pdf

Version: 2024-02-01

ΚΑΤΕΔΤΜΙΝΑ ΜΑCΑϊκονΑ:

#	Article	IF	CITATIONS
1	Synthesis of 3,3-dimethyl-6-oxopyrano[3,4- <i>c</i>]pyridines and their antiplatelet and vasodilatory activity. Journal of Pharmacy and Pharmacology, 2022, 74, 887-895.	1.2	6
2	Vitamin K – sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutrition Reviews, 2022, 80, 677-698.	2.6	64
3	Screening of Synthetic Heterocyclic Compounds as Antiplatelet Drugs. Medicinal Chemistry, 2022, 18, 536-543.	0.7	2
4	Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5. Nutrients, 2022, 14, 484.	1.7	59
5	Comparison of Antiplatelet Effects of Phenol Derivatives in Humans. Biomolecules, 2022, 12, 117.	1.8	4
6	Vitamin D: sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Critical Reviews in Clinical Laboratory Sciences, 2022, 59, 517-554.	2.7	45
7	The effect of flavonoids on the reduction of cupric ions, the copper-driven Fenton reaction and copper-triggered haemolysis. Food Chemistry, 2022, 394, 133461.	4.2	12
8	Can Isoquinoline Alkaloids Affect Platelet Aggregation in Whole Human Blood?. Toxins, 2022, 14, 491.	1.5	1
9	Vitamin C—Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination. Nutrients, 2021, 13, 615.	1.7	150
10	Dehydroflavonolignans from Silymarin Potentiate Transition Metal Toxicity In Vitro but Are Protective for Isolated Erythrocytes Ex Vivo. Antioxidants, 2021, 10, 679.	2.2	1
11	Chelation of Iron and Copper by Quercetin B-Ring Methyl Metabolites, Isorhamnetin and Tamarixetin, and Their Effect on Metal-Based Fenton Chemistry. Journal of Agricultural and Food Chemistry, 2021, 69, 5926-5937.	2.4	13
12	Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity. Nutrients, 2021, 13, 1703.	1.7	106
13	4â€Methylcatechol, a Flavonoid Metabolite with Potent Antiplatelet Effects. Molecular Nutrition and Food Research, 2019, 63, 1900261.	1.5	23
14	The Effect of Silymarin Flavonolignans and Their Sulfated Conjugates on Platelet Aggregation and Blood Vessels Ex Vivo. Nutrients, 2019, 11, 2286.	1.7	19
15	The influence of alkaloids on oxidative stress and related signaling pathways. Free Radical Biology and Medicine, 2019, 134, 429-444.	1.3	45
16	The influence of microbial isoflavonoid specific metabolites on platelets and transition metals iron and copper. Phytomedicine, 2019, 62, 152974.	2.3	3
17	In Vitro and In Silico Acetylcholinesterase Inhibitory Activity of Thalictricavine and Canadine and Their Predicted Penetration across the Blood-Brain Barrier. Molecules, 2019, 24, 1340.	1.7	23
18	Hematoxylin assay of cupric chelation can give false positive results. Journal of Trace Elements in Medicine and Biology, 2019, 52, 29-36.	1.5	1

ΚατεÅ™ινα ΜαςÃικονÃι

#	Article	IF	CITATIONS
19	9-(4'-dimethylaminophenyl)-2,6,7-trihydroxy-xanthene-3-one is a Potentially Novel Antiplatelet Drug which Antagonizes the Effect of Thromboxane A2. Medicinal Chemistry, 2018, 14, 200-209.	0.7	5
20	The isoflavonoid tectorigenin has better antiplatelet potential than acetylsalicylic acid. Phytomedicine, 2017, 35, 11-17.	2.3	19
21	lsoquinoline Alkaloids from <i>Fumaria officinalis</i> L. and Their Biological Activities Related to <i>Alzheimer</i> 's Disease. Chemistry and Biodiversity, 2016, 13, 91-99.	1.0	30
22	Antiplatelet Effects of Flavonoids Mediated by Inhibition of Arachidonic Acid Based Pathway. Planta Medica, 2016, 82, 76-83.	0.7	27
23	<i>In vitro</i> immunomodulatory activity, cytotoxicity and chemistry of some central European polypores. Pharmaceutical Biology, 2016, 54, 2369-2376.	1.3	21
24	lsoflavones Reduce Copper with Minimal Impact on Iron <i>In Vitro</i> . Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-11.	1.9	13
25	Rapid Determination of α-Hederin and Hederacoside C in Extracts of <i>Hedera helix</i> Leaves Available in the Czech Republic and Poland. Natural Product Communications, 2015, 10, 1934578X1501000.	0.2	3
26	Isoquinoline alkaloids as prolyl oligopeptidase inhibitors. Fìtoterapìâ, 2015, 103, 192-196.	1.1	23
27	Antioxidant Effects of Coumarins Include Direct Radical Scavenging, Metal Chelation and Inhibition of ROS-Producing Enzymes. Current Topics in Medicinal Chemistry, 2015, 15, 415-431.	1.0	32
28	Revised NMR Data for 9-O-Demethylgalanthine: An Alkaloid from Zephyranthes robusta (Amaryllidaceae) and its Biological Activity. Natural Product Communications, 2014, 9, 1934578X1400900.	0.2	6
29	Evaluation of the antioxidant activity of several naturally occurring coumarins and their synthesized analogues by "ferric reducing antioxidant power―assay. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 49-54.	2.5	13
30	Tannins and their Influence on Health. , 2014, , 159-208.		25
31	Effect of novel 1-phenyl-3-methyl-4-acylpyrazolones on iron chelation and Fenton reaction. Free Radical Biology and Medicine, 2014, 75, S29-S30.	1.3	1
32	In vitro evaluation of copper-chelating properties of flavonoids. RSC Advances, 2014, 4, 32628-32638.	1.7	73
33	Revised NMR data for 9-O-demethylgalanthine: an alkaloid from Zephyranthes robusta (Amaryllidaceae) and its biological activity. Natural Product Communications, 2014, 9, 787-8.	0.2	15
34	Novel method for rapid copper chelation assessment confirmed low affinity of D-penicillamine for copper in comparison with trientine and 8-hydroxyquinolines. Journal of Inorganic Biochemistry, 2013, 123, 80-87.	1.5	30
35	Alkaloids from <i>Zephyranthes robusta</i> <scp>Baker</scp> and Their Acetylcholinesterase―and Butyrylcholinesteraseâ€Inhibitory Activity. Chemistry and Biodiversity, 2013, 10, 1120-1127.	1.0	40
36	Alkaloids from Chlidanthus fragrans and their Acetylcholinesterase, Butyrylcholinesterase and Prolyl Oligopeptidase Activities. Natural Product Communications, 2013, 8, 1934578X1300801.	0.2	14

ΚατεÅ™ινα ΜαςÃικονÃι

#	Article	IF	CITATIONS
37	InÂvitro characteristics of 1-phenyl-3-methyl-4-acylpyrazol-5-ones iron chelators. Biochimie, 2012, 94, 125-131.	1.3	8
38	Iron reduction potentiates hydroxyl radical formation only in flavonols. Food Chemistry, 2012, 135, 2584-2592.	4.2	55
39	Dexrazoxane provided moderate protection in a catecholamine model of severe cardiotoxicity. Canadian Journal of Physiology and Pharmacology, 2012, 90, 473-484.	0.7	9
40	InÂvitro platelet antiaggregatory properties of 4-methylcoumarins. Biochimie, 2012, 94, 2681-2686.	1.3	23
41	Alkaloids from Some Amaryllidaceae Species and Their Cholinesterase Activity. Natural Product Communications, 2012, 7, 1934578X1200700.	0.2	7
42	Corylucinine, a new Alkaloid from <i>Corydalis cava</i> (Fumariaceae), and its Cholinesterase Activity. Natural Product Communications, 2012, 7, 1934578X1200700.	0.2	8
43	Partial genome sequence of murine gammaherpesvirus 72 and its analysis. Acta Virologica, 2012, 55, 317-325.	0.3	1
44	Analysis of Amaryllidaceae Alkaloids from Chlidanthus Fragrans by GC-MS and their Cholinesterase Activity. Natural Product Communications, 2011, 6, 1934578X1100600.	0.2	0
45	Acetylcholinesterase and Butyrylcholinesterase Inhibitory Compounds from Corydalis Cava (Fumariaceae). Natural Product Communications, 2011, 6, 1934578X1100600.	0.2	15
46	GC/MS Analysis of Three Amaryllidaceae Species and Their Cholinesterase Activity. Natural Product Communications, 2011, 6, 1934578X1100600.	0.2	6
47	Analysis of Amaryllidaceae alkaloids from Zephyranthes grandiflora by GC/MS and their cholinesterase activity. Revista Brasileira De Farmacognosia, 2011, 21, 575-580.	0.6	18
48	Effects of Herbal Preparation on Libido and Semen Quality in Boars. Reproduction in Domestic Animals, 2011, 46, 573-578.	0.6	22
49	In vitro analysis of iron chelating activity of flavonoids. Journal of Inorganic Biochemistry, 2011, 105, 693-701.	1.5	195
50	Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Corydalis cava (Fumariaceae). Natural Product Communications, 2011, 6, 607-10.	0.2	16
51	Isolation and cholinesterase activity of Amaryllidaceae alkaloids from Nerine bowdenii. Natural Product Communications, 2011, 6, 1827-30.	0.2	10
52	Free-radical Scavenging Activity of some European Polyporales. Natural Product Communications, 2010, 5, 1934578X1000500.	0.2	3
53	Analysis of Amaryllidaceae Alkaloids from <i>Zephyranthes Robusta</i> by GC-MS and Their Cholinesterase Activity. Natural Product Communications, 2010, 5, 1934578X1000500.	0.2	8
54	Acetylcholinesterase and Butyrylcholinesterase Inhibitory Compounds from <i>Eschscholzia californica</i> (Papaveraceae). Natural Product Communications, 2010, 5, 1934578X1000500.	0.2	7

#	Article	IF	CITATIONS
55	Acetylcholinesterase and Butyrylcholinesterase Inhibitory Compounds from <i>Chelidonium Majus</i> (Papaveraceae). Natural Product Communications, 2010, 5, 1934578X1000501.	0.2	13
56	In vitro interactions of coumarins with iron. Biochimie, 2010, 92, 1108-1114.	1.3	76
57	New antioxidant flavonoid isolated from <i>Leuzea carthamoides</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2010, 25, 143-145.	2.5	5
58	Free-radical scavenging activity of some European Polyporales. Natural Product Communications, 2010, 5, 923-6.	0.2	1
59	Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Eschscholzia californica (Papaveraceae). Natural Product Communications, 2010, 5, 1035-8.	0.2	23
60	Analysis of Amaryllidaceae alkaloids from Zephyranthes robusta by GC-MS and their cholinesterase activity. Natural Product Communications, 2010, 5, 1201-4.	0.2	4
61	Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from Chelidonium majus (Papaveraceae). Natural Product Communications, 2010, 5, 1751-4.	0.2	22
62	Free-radical scavenging activity of some European boletales. Natural Product Communications, 2009, 4, 261-4.	0.2	4