Louis M Luttrell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8524443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	β-Arrestin-Dependent Formation of β ₂ Adrenergic Receptor-Src Protein Kinase Complexes. Science, 1999, 283, 655-661.	12.6	1,375
2	Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature, 1997, 390, 88-91.	27.8	1,176
3	The role of β-arrestins in the termination and transduction of G-protein-coupled receptor signals. Journal of Cell Science, 2002, 115, 455-465.	2.0	935
4	The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. Journal of Cell Science, 2002, 115, 455-65.	2.0	780
5	Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Current Opinion in Cell Biology, 1999, 11, 177-183.	5.4	661
6	Independent Â-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10782-10787.	7.1	620
7	Receptor-tyrosine-kinase- and CÎ ² Î ³ -mediated MAP kinase activation by a common signalling pathway. Nature, 1995, 376, 781-784.	27.8	554
8	Essential Role for G Protein-coupled Receptor Endocytosis in the Activation of Mitogen-activated Protein Kinase. Journal of Biological Chemistry, 1998, 273, 685-688.	3.4	491
9	Role of c-Src Tyrosine Kinase in G Protein-coupled Receptorand Gβγ Subunit-mediated Activation of Mitogen-activated Protein Kinases. Journal of Biological Chemistry, 1996, 271, 19443-19450.	3.4	483
10	Targeting the Receptor-Gq Interface to Inhibit in Vivo Pressure Overload Myocardial Hypertrophy. Science, 1998, 280, 574-577.	12.6	442
11	Distinct β-Arrestin- and G Protein-dependent Pathways for Parathyroid Hormone Receptor-stimulated ERK1/2 Activation. Journal of Biological Chemistry, 2006, 281, 10856-10864.	3.4	422
12	Gβγ Subunits Mediate Src-dependent Phosphorylation of the Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 1997, 272, 4637-4644.	3.4	420
13	Ras-dependent Mitogen-activated Protein Kinase Activation by G Protein-coupled Receptors. Journal of Biological Chemistry, 1997, 272, 19125-19132.	3.4	418
14	Distinct Pathways of Gi- and Gq-mediated Mitogen-activated Protein Kinase Activation. Journal of Biological Chemistry, 1995, 270, 17148-17153.	3.4	397
15	Mitogenic Signaling via G Protein-Coupled Receptors. Endocrine Reviews, 1996, 17, 698-714.	20.1	393
16	The β2-Adrenergic Receptor Mediates Extracellular Signal-regulated Kinase Activation via Assembly of a Multi-receptor Complex with the Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 2000, 275, 9572-9580.	3.4	386
17	New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene, 2001, 20, 1532-1539.	5.9	384
18	Beyond Desensitization: Physiological Relevance of Arrestin-Dependent Signaling. Pharmacological Reviews, 2010, 62, 305-330.	16.0	355

#	Article	IF	CITATIONS
19	Phosphatidylinositol 3-Kinase Is an Early Intermediate in the Gβγ-mediated Mitogen-activated Protein Kinase Signaling Pathway. Journal of Biological Chemistry, 1996, 271, 12133-12136.	3.4	346
20	β-Arrestin Scaffolding of the ERK Cascade Enhances Cytosolic ERK Activity but Inhibits ERK-mediated Transcription following Angiotensin AT1a Receptor Stimulation. Journal of Biological Chemistry, 2002, 277, 9429-9436.	3.4	345
21	The Diverse Roles of Arrestin Scaffolds in G Protein–Coupled Receptor Signaling. Pharmacological Reviews, 2017, 69, 256-297.	16.0	332
22	The Stability of the G Protein-coupled Receptor-β-Arrestin Interaction Determines the Mechanism and Functional Consequence of ERK Activation. Journal of Biological Chemistry, 2003, 278, 6258-6267.	3.4	316
23	Src-mediated Tyrosine Phosphorylation of Dynamin Is Required for β2-Adrenergic Receptor Internalization and Mitogen-activated Protein Kinase Signaling. Journal of Biological Chemistry, 1999, 274, 1185-1188.	3.4	243
24	Pleiotropic Coupling of G Protein-coupled Receptors to the Mitogen-activated Protein Kinase Cascade. Journal of Biological Chemistry, 1999, 274, 13978-13984.	3.4	240
25	Dual Inhibition of β-Adrenergic and Angiotensin II Receptors by a Single Antagonist. Circulation, 2003, 108, 1611-1618.	1.6	236
26	Transactivation of the EGF Receptor Mediates IGF-1-stimulated Shc Phosphorylation and ERK1/2 Activation in COS-7 Cells. Journal of Biological Chemistry, 2000, 275, 22583-22589.	3.4	229
27	Role of endocytosis in the activation of the extracellular signal-regulated kinase cascade by sequestering and nonsequestering G protein-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 1489-1494.	7.1	212
28	Platelet-Derived Growth Factor Receptor Association with Na + /H + Exchanger Regulatory Factor Potentiates Receptor Activity. Molecular and Cellular Biology, 2000, 20, 8352-8363.	2.3	201
29	Epidermal Growth Factor (EGF) Receptor-dependent ERK Activation by G Protein-coupled Receptors. Journal of Biological Chemistry, 2001, 276, 23155-23160.	3.4	199
30	Not so strange bedfellows: G-protein-coupled receptors and Src family kinases. Oncogene, 2004, 23, 7969-7978.	5.9	199
31	Go-protein α-Subunits Activate Mitogen-activated Protein Kinase via a Novel Protein Kinase C-dependent Mechanism. Journal of Biological Chemistry, 1996, 271, 1266-1269.	3.4	197
32	G Protein-coupled Receptors Mediate Two Functionally Distinct Pathways of Tyrosine Phosphorylation in Rat 1a Fibroblasts. Journal of Biological Chemistry, 1997, 272, 31648-31656.	3.4	193
33	Gβγ Subunits Mediate Mitogen-activated Protein Kinase Activation by the Tyrosine Kinase Insulin-like Growth Factor 1 Receptor. Journal of Biological Chemistry, 1995, 270, 16495-16498.	3.4	192
34	The conformational signature of β-arrestin2 predicts its trafficking and signalling functions. Nature, 2016, 531, 665-668.	27.8	191
35	A β-Arrestin–Biased Agonist of the Parathyroid Hormone Receptor (PTH1R) Promotes Bone Formation Independent of G Protein Activation. Science Translational Medicine, 2009, 1, 1ra1.	12.4	188
36	Direct Binding of Activated c-Src to the β3-Adrenergic Receptor Is Required for MAP Kinase Activation. Journal of Biological Chemistry, 2000, 275, 38131-38134.	3.4	183

#	Article	IF	CITATIONS
37	The Origins of Diversity and Specificity in G Protein-Coupled Receptor Signaling. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 485-494.	2.5	182
38	β-Arrestin1 Interacts with the Catalytic Domain of the Tyrosine Kinase c-SRC. Journal of Biological Chemistry, 2000, 275, 11312-11319.	3.4	180
39	Fulfilling the Promise of "Biased" G Protein–Coupled Receptor Agonism. Molecular Pharmacology, 2015, 88, 579-588.	2.3	178
40	Protein Kinase A-mediated Phosphorylation of the β2-Adrenergic Receptor Regulates Its Coupling to Gs and Gi. Journal of Biological Chemistry, 2002, 277, 31249-31256.	3.4	175
41	The β3-Adrenergic Receptor Activates Mitogen-activated Protein Kinase in Adipocytes through a Gi-dependent Mechanism. Journal of Biological Chemistry, 1999, 274, 12017-12022.	3.4	169
42	Manifold roles of \hat{l}^2 -arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Science Signaling, 2018, 11, .	3.6	169
43	Dancing with Different Partners: Protein Kinase A Phosphorylation of Seven Membrane-Spanning Receptors Regulates Their G Protein-Coupling Specificity. Molecular Pharmacology, 2002, 62, 971-974.	2.3	162
44	Protein Kinase A and G Protein-coupled Receptor Kinase Phosphorylation Mediates β-1 Adrenergic Receptor Endocytosis through Different Pathways. Journal of Biological Chemistry, 2003, 278, 35403-35411.	3.4	140
45	Serotonin 5-HT1A Receptor-mediated Erk Activation Requires Calcium/Calmodulin-dependent Receptor Endocytosis. Journal of Biological Chemistry, 1999, 274, 4749-4753.	3.4	138
46	Src-dependent Tyrosine Phosphorylation Regulates Dynamin Self-assembly and Ligand-induced Endocytosis of the Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 2002, 277, 26642-26651.	3.4	130
47	Reviews in Molecular Biology and Biotechnology: Transmembrane Signaling by G Protein-Coupled Receptors. Molecular Biotechnology, 2008, 39, 239-264.	2.4	124
48	Feedback Regulation of β-Arrestin1 Function by Extracellular Signal-regulated Kinases. Journal of Biological Chemistry, 1999, 274, 15971-15974.	3.4	123
49	Ubiquitination of β-Arrestin Links Seven-transmembrane Receptor Endocytosis and ERK Activation. Journal of Biological Chemistry, 2007, 282, 29549-29562.	3.4	121
50	β-Arrestin-mediated Recruitment of the Src Family Kinase Yes Mediates Endothelin-1-stimulated Glucose Transport. Journal of Biological Chemistry, 2001, 276, 43663-43667.	3.4	115
51	ACTIVATION OF EXTRACELLULAR SIGNAL-REGULATED KINASE IN HUMAN PROSTATE CANCER. Journal of Urology, 1999, 162, 1537-1542.	0.4	113
52	Minireview: More Than Just a Hammer: Ligand "Bias―and Pharmaceutical Discovery. Molecular Endocrinology, 2014, 28, 281-294.	3.7	108
53	Composition and Function of G Protein-Coupled Receptor Signalsomes Controlling Mitogen-Activated Protein Kinase Activity. Journal of Molecular Neuroscience, 2005, 26, 253-264.	2.3	106
54	The Adiponectin Receptors AdipoR1 and AdipoR2 Activate ERK1/2 through a Src/Ras-Dependent Pathway and Stimulate Cell Growth. Biochemistry, 2008, 47, 11682-11692.	2.5	105

#	Article	IF	CITATIONS
55	Activation and targeting of mitogen-activated protein kinases by G-protein-coupled receptors. Canadian Journal of Physiology and Pharmacology, 2002, 80, 375-382.	1.4	102
56	5-HT2A Receptor Induces ERK Phosphorylation and Proliferation through ADAM-17 Tumor Necrosis Factor-α-converting Enzyme (TACE) Activation and Heparin-bound Epidermal Growth Factor-like Growth Factor (HB-EGF) Shedding in Mesangial Cells. Journal of Biological Chemistry, 2006, 281, 21004-21012.	3.4	99
57	Transmembrane Signaling by G Protein-Coupled Receptors. , 2006, 332, 1-50.		98
58	Allosteric Modulators of G Protein-Coupled Receptors: Future Therapeutics for Complex Physiological Disorders. Journal of Pharmacology and Experimental Therapeutics, 2009, 331, 340-348.	2.5	88
59	Effect of Cellular Expression of Pleckstrin Homology Domains on Gi-coupled Receptor Signaling. Journal of Biological Chemistry, 1995, 270, 12984-12989.	3.4	83
60	Insulin-like Growth Factors Mediate Heterotrimeric G Protein-dependent ERK1/2 Activation by Transactivating Sphingosine 1-Phosphate Receptors. Journal of Biological Chemistry, 2006, 281, 31399-31407.	3.4	82
61	β-Arrestins 1 and 2 differentially regulate LPS-induced signaling and pro-inflammatory gene expression. Molecular Immunology, 2007, 44, 3092-3099.	2.2	80
62	Pasteurella multocida Toxin Stimulates Mitogen-activated Protein Kinase via Gq/11-dependent Transactivation of the Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 2000, 275, 2239-2245.	3.4	79
63	21 C-protein-coupled receptors and their regulation. Advances in Second Messenger and Phosphoprotein Research, 1997, , 263-277.	4.5	79
64	Chapter 24 Insulin‣ike Growth Factorâ€2/Mannoseâ€6 Phosphate Receptors. Vitamins and Hormones, 2009, 80, 667-697.	1.7	76
65	β-Arrestin Based Receptor Signaling Paradigms: Potential Therapeutic Targets for Complex Age-Related Disorders. Frontiers in Pharmacology, 2018, 9, 1369.	3.5	75
66	Refining Efficacy: Allosterism and Bias in G Protein-Coupled Receptor Signaling. Methods in Molecular Biology, 2011, 756, 3-35.	0.9	74
67	β-Arrestin- and G Protein Receptor Kinase-Mediated Calcium-Sensing Receptor Desensitization. Molecular Endocrinology, 2005, 19, 1078-1087.	3.7	72
68	MITOGENIC SIGNALING IN ANDROGEN SENSITIVE AND INSENSITIVE PROSTATE CANCER CELL LINES. Journal of Urology, 2000, 163, 1027-1032.	0.4	66
69	Betaâ€arrestin 2 negatively regulates sepsisâ€induced inflammation. Immunology, 2010, 130, 344-351.	4.4	65
70	The β-Arrestin Pathway-selective Type 1A Angiotensin Receptor (AT1A) Agonist [Sar1,lle4,lle8]Angiotensin II Regulates a Robust G Protein-independent Signaling Network. Journal of Biological Chemistry, 2011, 286, 19880-19891.	3.4	62
71	β-Arrestin-Selective G Protein-Coupled Receptor Agonists Engender Unique Biological Efficacy in Vivo. Molecular Endocrinology, 2013, 27, 296-314.	3.7	62
72	Signaling in Time and Space: G Protein-Coupled Receptors and Mitogen-Activated Protein Kinases. Assay and Drug Development Technologies, 2003, 1, 327-338.	1.2	61

#	Article	IF	CITATIONS
73	Connective Tissue Growth Factor and Susceptibility to Renal and Vascular Disease Risk in Type 1 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 1893-1900.	3.6	57
74	Role of Î ² -Arrestin-mediated Desensitization and Signaling in the Control of Angiotensin AT1a Receptor-stimulated Transcription. Journal of Biological Chemistry, 2008, 283, 2088-2097.	3.4	56
75	Arrestin-mediated ERK Activation by Gonadotropin-releasing Hormone Receptors. Journal of Biological Chemistry, 2006, 281, 2701-2710.	3.4	55
76	Diversity in arrestin function. Cellular and Molecular Life Sciences, 2009, 66, 2953-2973.	5.4	55
77	Conformational Sensors and Domain Swapping Reveal Structural and Functional Differences between β-Arrestin Isoforms. Cell Reports, 2019, 28, 3287-3299.e6.	6.4	54
78	G Protein-Coupled Receptor Signaling Complexity in Neuronal Tissue:Implications for Novel Therapeutics. Current Alzheimer Research, 2007, 4, 3-19.	1.4	53
79	c-Src-mediated phosphorylation of AP-2 reveals a general mechanism for receptors internalizing through the clathrin pathway. Cellular Signalling, 2009, 21, 103-110.	3.6	53
80	The Insulin-like Growth Factor Type 1 and Insulin-like Growth Factor Type 2/Mannose-6-phosphate Receptors Independently Regulate ERK1/2 Activity in HEK293 Cells. Journal of Biological Chemistry, 2007, 282, 26150-26157.	3.4	52
81	Arrestins as Regulators of Kinases and Phosphatases. Progress in Molecular Biology and Translational Science, 2013, 118, 115-147.	1.7	51
82	Autologous Mesenchymal Stem Cell and Islet Cotransplantation: Safety and Efficacy. Stem Cells Translational Medicine, 2018, 7, 11-19.	3.3	51
83	HDL3, but not HDL2, stimulates plasminogen activator inhibitor-1 release from adipocytes: the role of sphingosine-1-phosphate. Journal of Lipid Research, 2010, 51, 2619-2628.	4.2	50
84	G Protein-coupled Receptors Desensitize and Down-regulate Epidermal Growth Factor Receptors in Renal Mesangial Cells. Journal of Biological Chemistry, 2001, 276, 27335-27344.	3.4	49
85	Signal Switching, Crosstalk, and Arrestin Scaffolds. Hypertension, 2006, 48, 173-179.	2.7	48
86	Increased expression of beta-arrestin 1 and 2 in murine models of rheumatoid arthritis: Isoform specific regulation of inflammation. Molecular Immunology, 2011, 49, 64-74.	2.2	48
87	β-Arrestin 2 Expression Determines the Transcriptional Response to Lysophosphatidic Acid Stimulation in Murine Embryo Fibroblasts. Journal of Biological Chemistry, 2005, 280, 32157-32167.	3.4	47
88	â€~Biasing' the parathyroid hormone receptor: A novel anabolic approach to increasing bone mass?. British Journal of Pharmacology, 2011, 164, 59-67.	5.4	47
89	Transactivation of the Epidermal Growth Factor Receptor Mediates Parathyroid Hormone and Prostaglandin F2α-Stimulated Mitogen-Activated Protein Kinase Activation in Cultured Transgenic Murine Osteoblasts. Molecular Endocrinology, 2003, 17, 1607-1621.	3.7	46
90	Plasma Kallikrein Promotes Epidermal Growth Factor Receptor Transactivation and Signaling in Vascular Smooth Muscle through Direct Activation of Protease-activated Receptors. Journal of Biological Chemistry, 2010, 285, 35206-35215.	3.4	46

#	Article	IF	CITATIONS
91	The Arrestin-selective Angiotensin AT1 Receptor Agonist [Sar1,Ile4,Ile8]-AngII Negatively Regulates Bradykinin B2 Receptor Signaling via AT1-B2 Receptor Heterodimers. Journal of Biological Chemistry, 2013, 288, 18872-18884.	3.4	46
92	Identification of a putative nuclear localization sequence within ANG II AT1A receptor associated with nuclear activation. American Journal of Physiology - Cell Physiology, 2007, 292, C1398-C1408.	4.6	43
93	Functional Signaling Biases in G Protein-Coupled Receptors: Game Theory and Receptor Dynamics. Mini-Reviews in Medicinal Chemistry, 2012, 12, 831-840.	2.4	43
94	Translating in vitro ligand bias into in vivo efficacy. Cellular Signalling, 2018, 41, 46-55.	3.6	43
95	Ectodomain Shedding-Dependent Transactivation of Epidermal Growth Factor Receptors in Response to Insulin-Like Growth Factor Type I. Molecular Endocrinology, 2004, 18, 2727-2739.	3.7	41
96	Essential Role of c-Cbl in Amphiregulin-Induced Recycling and Signaling of the Endogenous Epidermal Growth Factor Receptor. Biochemistry, 2009, 48, 1462-1473.	2.5	41
97	Delineation of a Conserved Arrestin-Biased Signaling Repertoire In Vivo. Molecular Pharmacology, 2015, 87, 706-717.	2.3	40
98	Arrestin-dependent Angiotensin AT1 Receptor Signaling Regulates Akt and mTor-mediated Protein Synthesis. Journal of Biological Chemistry, 2014, 289, 26155-26166.	3.4	39
99	S1P in HDL promotes interaction between SR-BI and S1PR1 and activates S1PR1-mediated biological functions: calcium flux and S1PR1 internalization. Journal of Lipid Research, 2017, 58, 325-338.	4.2	35
100	SnapShot: β-Arrestin Functions. Cell, 2020, 182, 1362-1362.e1.	28.9	35
101	Selective Inhibition of Heterotrimeric GsSignaling. Journal of Biological Chemistry, 2002, 277, 28631-28640.	3.4	34
102	Constitutive ERK1/2 Activation by a Chimeric Neurokinin 1 Receptor-β-Arrestin1 Fusion Protein. Journal of Biological Chemistry, 2006, 281, 19346-19357.	3.4	34
103	Informatic deconvolution of biased GPCR signaling mechanisms from in vivo pharmacological experimentation. Methods, 2016, 92, 51-63.	3.8	33
104	Arrestin-Dependent Activation of ERK and Src Family Kinases. Handbook of Experimental Pharmacology, 2014, 219, 225-257.	1.8	31
105	Bradykinin Decreases Podocyte Permeability through ADAM17-Dependent Epidermal Growth Factor Receptor Activation and Zonula Occludens-1 Rearrangement. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 775-783.	2.5	29
106	GIT2—A keystone in ageing and age-related disease. Ageing Research Reviews, 2018, 43, 46-63.	10.9	29
107	Relationship between vitamin D status and incidence of vascular events in the Veterans Affairs Diabetes Trial. Atherosclerosis, 2013, 228, 502-507.	0.8	26
108	Refining Efficacy: Exploiting Functional Selectivity for Drug Discovery. Advances in Pharmacology, 2011, 62, 79-107.	2.0	25

#	Article	IF	CITATIONS
109	Biasing the Parathyroid Hormone Receptor. Methods in Enzymology, 2013, 522, 229-262.	1.0	25
110	Genetic variant in the promoter of connective tissue growth factor gene confers susceptibility to nephropathy in type 1 diabetes. Journal of Medical Genetics, 2010, 47, 391-397.	3.2	24
111	Angiotensin II activates NF-κB through AT _{1A} receptor recruitment of β-arrestin in cultured rat vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2013, 304, C1176-C1186.	4.6	24
112	Inhibition of Sphingosine Kinase 1 Ameliorates Angiotensin II-Induced Hypertension and Inhibits Transmembrane Calcium Entry via Store-Operated Calcium Channel. Molecular Endocrinology, 2015, 29, 896-908.	3.7	23
113	Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods, 2016, 92, 36-50.	3.8	23
114	Textrous!: Extracting Semantic Textual Meaning from Gene Sets. PLoS ONE, 2013, 8, e62665.	2.5	23
115	Low-Density Lipoprotein Induced Expression of Connective Tissue Growth Factor via Transactivation of Sphingosine 1-Phosphate Receptors in Mesangial Cells. Molecular Endocrinology, 2012, 26, 833-845.	3.7	21
116	Arrestin Pathways as Drug Targets. Progress in Molecular Biology and Translational Science, 2013, 118, 469-497.	1.7	21
117	Transcriptomic characterization of signaling pathways associated with osteoblastic differentiation of MC-3T3E1 cells. PLoS ONE, 2019, 14, e0204197.	2.5	21
118	Heptahelical Terpsichory. Who Calls the Tune?. Journal of Receptor and Signal Transduction Research, 2008, 28, 39-58.	2.5	20
119	β-Arrestin2 is a critical component of the GPCR–eNOS signalosome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11483-11492.	7.1	20
120	Insulin-like Growth Factors Mediate Heterotrimeric G Protein-dependent ERK1/2 Activation by Transactivating Sphingosine 1-Phosphate Receptors. Journal of Biological Chemistry, 2006, 281, 31399-31407.	3.4	19
121	Phospholipase C and Protein Kinase C-β 2 Mediate Insulin-Like Growth Factor II-Dependent Sphingosine Kinase 1 Activation. Molecular Endocrinology, 2011, 25, 2144-2156.	3.7	18
122	Plasma Connective Tissue Growth Factor (CTGF/CCN2) Levels Predict Myocardial Infarction in the Veterans Affairs Diabetes Trial (VADT) Cohort. Diabetes Care, 2018, 41, 840-846.	8.6	18
123	Angiotensin II-Induced Cyclooxygenase 2 Expression in Rat Aorta Vascular Smooth Muscle Cells Does Not Require Heterotrimeric G Protein Activation. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 118-124.	2.5	14
124	Novel Mechanisms in the Regulation of G Protein-coupled Receptor Trafficking to the Plasma Membrane*. Journal of Biological Chemistry, 2010, 285, 33816-33825.	3.4	12
125	Endocrine Function in Aging. International Journal of Endocrinology, 2012, 2012, 1-3.	1.5	12
126	Plasma Prekallikrein Is Associated With Carotid Intima-Media Thickness in Type 1 Diabetes. Diabetes, 2016, 65, 498-502.	0.6	12

#	Article	IF	CITATIONS
127	Aging-related modifications to G protein-coupled receptor signaling diversity. , 2021, 223, 107793.		12
128	Emergent biological properties of arrestin pathway-selective biased agonism. Journal of Receptor and Signal Transduction Research, 2013, 33, 153-161.	2.5	11
129	A High-Content, Live-Cell, and Real-Time Approach to the Quantitation of Ligand-Induced β-Arrestin2 and Class A/Class B GPCR Mobilization. Microscopy and Microanalysis, 2013, 19, 150-170.	0.4	11
130	Epidermal growth factor-induced proliferation of collecting duct cells from Oak Ridge polycystic kidney mice involves activation of Na ⁺ /H ⁺ exchanger. American Journal of Physiology - Cell Physiology, 2014, 307, C554-C560.	4.6	11
131	Angiotensin II receptors and peritoneal dialysis-induced peritoneal fibrosis. International Journal of Biochemistry and Cell Biology, 2016, 77, 240-250.	2.8	11
132	Islet Harvest in Carbon Monoxide-Saturated Medium for Chronic Pancreatitis Patients Undergoing Islet Autotransplantation. Cell Transplantation, 2019, 28, 25S-36S.	2.5	11
133	Hyperparathyroidism-jaw Tumor Syndrome: An Overlooked Cause of Severe Hypercalcemia. American Journal of the Medical Sciences, 2016, 352, 302-305.	1.1	10
134	Multivariate generalized linear mixed models with random intercepts to analyze cardiovascular risk markers in type-1 diabetic patients. Journal of Applied Statistics, 2016, 43, 1447-1464.	1.3	9
135	Partial Insulin Resistance in the Mouse BC ₃ H-1 Cell Line: Absent Hexose-Independent Actions of Insulin*. Endocrinology, 1986, 119, 331-342.	2.8	8
136	Regulation of Mitogen-Activated Protein Kinase Pathways by Catecholamine Receptors. Advances in Pharmacology, 1997, 42, 466-470.	2.0	6
137	Big G, Little G. Molecular Cell, 2002, 9, 1152-1154.	9.7	6
138	GPCR Signaling Rides a Wave of Conformational Changes. Cell, 2016, 167, 602-603.	28.9	5
139	Probing Arrestin Function Using Intramolecular FlAsH-BRET Biosensors. Methods in Molecular Biology, 2019, 1957, 309-322.	0.9	5
140	Analysis of longitudinal semicontinuous data using marginalized two-part model. Journal of Translational Medicine, 2018, 16, 301.	4.4	4
141	Regulators of GPCR Activity. Contemporary Clinical Neuroscience, 2005, , 159-198.	0.3	4
142	ACTIVATION OF EXTRACELLULAR SIGNAL-REGULATED KINASE IN HUMAN PROSTATE CANCER. Journal of Urology, 1999, , 1537-1542.	0.4	3
143	Stimulation of Cyclooxygenase 2 Expression in Rat Peritoneal Mesothelial Cells. Nephron Experimental Nephrology, 2015, 128, 89-97.	2.2	2
144	Longitudinal Plasma Kallikrein Levels and Their Association With the Risk of Cardiovascular Disease Outcomes in Type 1 Diabetes in DCCT/EDIC. Diabetes, 2020, 69, 2440-2445.	0.6	2

#	Article	IF	CITATIONS
145	Plasma kallikrein promotes epidermal growth factor receptor transactivation and signaling in vascular smooth muscle through direct activation of protease-activated receptors Journal of Biological Chemistry, 2011, 286, 23620.	3.4	1
146	Preface. Progress in Molecular Biology and Translational Science, 2013, 118, xv.	1.7	1
147	Arrestin-Dependent ERK Activation and Its Disruption. , 2017, , 199-217.		1
148	MITOGENIC SIGNALING IN ANDROGEN SENSITIVE AND INSENSITIVE PROSTATE CANCER CELL LINES. Journal of Urology, 2000, , 1027.	0.4	1
149	Abstract 133: Mechanistic Insights Into Bradykinin and Thromboxane Receptors Heterodimerization in Vascular Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	2.4	1
150	Reply to Schierwagen et al.: β-Arrestins in liver disease. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27085-27086.	7.1	0
151	Phosphorylation of G Proteins. , 2003, , 609-612.		0
152	5â€HT induces threonine (T375) phosphorylation of ADAM17/TACE cytoplasmic tail. FASEB Journal, 2008, 22, 829.7.	0.5	0
153	Biased agonism reveals new G proteinâ€independent AT1a receptor signals. FASEB Journal, 2009, 23, 880.5.	0.5	0
154	Sphingosine Kinase 1 Mediates Transmembrane Calcium Entry via Storeâ€Operated Calcium Channel. FASEB Journal, 2015, 29, 715.34.	0.5	0
155	Is Signaling Specificity Encoded in Arrestin Conformation?. , 2017, , 235-253.		0
156	The RXFP3â€GIT2 signaling system represents a potential multidimensional therapeutic target in ageâ€related disorders. FASEB Journal, 2018, 32, 533.111.	0.5	0
157	Sphingosine 1 Phosphate Regulates Storeâ€Operated Calcium Entry through binding to STIM1. FASEB Journal, 2018, 32, 815.10.	0.5	0
158	Ligandâ€specific patterns of PTH 1 R and arrestin3 internalization and trafficking define a novel form of ligand "bias― FASEB Journal, 2018, 32, 685.3.	0.5	0