Marco Taddei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8524416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Overcoming mass transfer limitations in cross-linked polyethyleneimine-based adsorbents to enable selective CO ₂ capture at ambient temperature. Materials Advances, 2022, 3, 3174-3191.	2.6	3
2	Interplay between oxygen doping and ultra-microporosity improves the CO2/N2 separation performance of carbons derived from aromatic polycarboxylates. Carbon, 2021, 173, 989-1002.	5.4	16
3	Engineering metal–organic frameworks for adsorption-based gas separations: from process to atomic scale. Molecular Systems Design and Engineering, 2021, 6, 841-875.	1.7	36
4	Drastic enhancement of carbon dioxide adsorption in fluoroalkyl-modified poly(allylamine). Journal of Materials Chemistry A, 2021, 9, 10827-10837.	5.2	10
5	Inâ€Situ Xâ€ray Diffraction Investigation of the Crystallisation of Perfluorinated Ce ^{IV} â€Based Metal–Organic Frameworks with UiOâ€66 and MILâ€140 Architectures**. Chemistry - A European Journal, 2021, 27, 6579-6592.	1.7	10
6	Metal–Organic Frameworks in Italy: From synthesis and advanced characterization to theoretical modeling and applications. Coordination Chemistry Reviews, 2021, 437, 213861.	9.5	10
7	"Shake â€~n Bake―Route to Functionalized Zr-UiO-66 Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 14294-14301.	1.9	20
8	Investigating the effect of positional isomerism on the assembly of zirconium phosphonates based on tritopic linkers. Dalton Transactions, 2020, 49, 3662-3666.	1.6	8
9	Influence of Water in the Synthesis of the Zirconium-Based Metal–Organic Framework UiO-66: Isolation and Reactivity of [ZrCl(OH) ₂ (DMF) ₂]Cl. Inorganic Chemistry, 2020, 59, 7860-7868.	1.9	29
10	Band gap modulation in zirconium-based metal–organic frameworks by defect engineering. Journal of Materials Chemistry A, 2019, 7, 23781-23786.	5.2	79
11	Solvent-Free Synthetic Route for Cerium(IV) Metal–Organic Frameworks with UiO-66 Architecture and Their Photocatalytic Applications. ACS Applied Materials & Interfaces, 2019, 11, 45031-45037.	4.0	58
12	Metal Phosphonates and Phosphinates. Crystals, 2019, 9, 454.	1.0	4
13	An Optimised Compaction Process for Zr-Fumarate (MOF-801). Inorganics, 2019, 7, 110.	1.2	17
14	Epoxy Cross-Linked Polyamine CO ₂ Sorbents Enhanced via Hydrophobic Functionalization. Chemistry of Materials, 2019, 31, 4673-4684.	3.2	33
15	New Directions in Metal Phosphonate and Phosphinate Chemistry. Crystals, 2019, 9, 270.	1.0	81
16	A new approach to enhancing the CO ₂ capture performance of defective UiO-66 <i>via</i> post-synthetic defect exchange. Dalton Transactions, 2019, 48, 3349-3359.	1.6	57
17	Water-Based Synthesis and Enhanced CO ₂ Capture Performance of Perfluorinated Cerium-Based Metal–Organic Frameworks with UiO-66 and MIL-140 Topology. ACS Sustainable Chemistry and Engineering, 2019, 7, 394-402.	3.2	75
18	Same Not the Same: Thermally Driven Transformation of Nickel Phosphinate-Bipyridine One-Dimensional Chains into Three-Dimensional Coordination Polymers. Crystal Growth and Design, 2018, 18, 2234-2242.	1.4	9

Marco Taddei

#	Article	IF	CITATIONS
19	Post‧ynthetic Ligand Exchange in Zirconiumâ€Based Metal–Organic Frameworks: Beware of The Defects!. Angewandte Chemie - International Edition, 2018, 57, 11706-11710.	7.2	107
20	Post‣ynthetic Ligand Exchange in Zirconiumâ€Based Metal–Organic Frameworks: Beware of The Defects!. Angewandte Chemie, 2018, 130, 11880-11884.	1.6	3
21	When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coordination Chemistry Reviews, 2017, 343, 1-24.	9.5	226
22	In situ high-resolution powder X-ray diffraction study of UiO-66 under synthesis conditions in a continuous-flow microwave reactor. CrystEngComm, 2017, 19, 3206-3214.	1.3	28
23	Mixed-linker UiO-66: structure–property relationships revealed by a combination of high-resolution powder X-ray diffraction and density functional theory calculations. Physical Chemistry Chemical Physics, 2017, 19, 1551-1559.	1.3	47
24	A three-dimensional view of structural changes caused by deactivation of fluid catalytic cracking catalysts. Nature Communications, 2017, 8, 809.	5.8	72
25	Crystalline versus amorphous one-dimensional to three-dimensional coordination polymer transformations. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C962-C962.	0.0	0
26	Continuousâ€Flow Microwave Synthesis of Metal–Organic Frameworks: A Highly Efficient Method for Large‧cale Production. Chemistry - A European Journal, 2016, 22, 3245-3249.	1.7	132
27	Robust Metalâ€Organic Frameworks Based on Tritopic Phosphonoaromatic Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 4300-4309.	1.0	59
28	Decomposition Process of Carboxylate MOF HKUST-1 Unveiled at the Atomic Scale Level. Journal of Physical Chemistry C, 2016, 120, 12879-12889.	1.5	99
29	Aging of the reaction mixture as a tool to modulate the crystallite size of UiO-66 into the low nanometer range. Chemical Communications, 2016, 52, 6411-6414.	2.2	39
30	Amino-Functionalized Layered Crystalline Zirconium Phosphonates: Synthesis, Crystal Structure, and Spectroscopic Characterization. Inorganic Chemistry, 2016, 55, 6278-6285.	1.9	23
31	Prohibited and allowed crystal-crystal transformations in phosphinate based coordination polymers. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s115-s115.	0.0	0
32	Efficient microwave assisted synthesis of metal–organic framework UiO-66: optimization and scale up. Dalton Transactions, 2015, 44, 14019-14026.	1.6	104
33	A structural and 1H NMR relaxometric study on novel layered carboxyalkylaminophosphonate nanocrystals with Gd(iii) ions located in the framework. Dalton Transactions, 2015, 44, 19072-19075.	1.6	2
34	A Layered Mixed Zirconium Phosphate/Phosphonate with Exposed Carboxylic and Phosphonic Groups: X-ray Powder Structure and Proton Conductivity Properties. Inorganic Chemistry, 2014, 53, 13220-13226.	1.9	71
35	The first route to highly stable crystalline microporous zirconium phosphonate metal–organic frameworks. Chemical Communications, 2014, 50, 14831-14834.	2.2	96
36	The use of a rigid tritopic phosphonic ligand for the synthesis of a robust honeycomb-like layered zirconium phosphonate framework. Chemical Communications, 2014, 50, 5737-5740.	2.2	54

Marco Taddei

#	Article	IF	CITATIONS
37	Layered Metal(IV) Phosphonates with Rigid Pendant Groups: New Synthetic Approaches to Nanosized Zirconium Phosphate Phenylphosphonates. Inorganic Chemistry, 2014, 53, 2222-2229.	1.9	24
38	Synthesis, Crystal Structure, and Proton Conductivity of One-Dimensional, Two-Dimensional, and Three-Dimensional Zirconium Phosphonates Based on Glyphosate and Glyphosine. Inorganic Chemistry, 2013, 52, 12131-12139.	1.9	47
39	On the role of non-covalent interactions in the assembly of 3D zirconium methyl- and ethyl-N,N-bis phosphonates. Dalton Transactions, 2013, 42, 9671.	1.6	14
40	Supramolecular interactions impacting on the water stability of tubular metal–organic frameworks. RSC Advances, 2013, 3, 26177.	1.7	14
41	Synthesis, breathing, and gas sorption study of the first isoreticular mixed-linker phosphonate based metal–organic frameworks. Chemical Communications, 2013, 49, 1315.	2.2	85
42	Integrated PLGA–Ag nanocomposite systems to control the degradation rate and antibacterial properties. Journal of Applied Polymer Science, 2013, 130, 1185-1193.	1.3	33
43	Multitechnique Experimental Insight on an Unusual Crystal-to-Crystal High Temperature Solid State Reaction in Zirconium Carboxypyridinephosphonates: From One-Dimensional Chains to Two-Dimensional Hybrid Layers Through HF Elimination. Crystal Growth and Design, 2012, 12, 5462-5470.	1.4	16
44	Influence of ï€â€"ï€ Stacking Interactions on the Assembly of Layered Copper Phosphonate Coordination Polymers: Combined Powder Diffraction and Electron Paramagnetic Resonance Study. Crystal Growth and Design, 2012, 12, 2327-2335.	1.4	24
45	Design and synthesis of plasticizing fillers based on zirconium phosphonates for glycerol-free composite starch films. Journal of Materials Chemistry, 2012, 22, 5098.	6.7	16
46	New Hybrid Zirconium Aminophosphonates Containing Piperidine and Bipiperidine Groups. Inorganic Chemistry, 2011, 50, 10835-10843.	1.9	19
47	Chapter 2. Zirconium Phosphonates. , 2011, , 45-86.		1
48	Synthesis and Crystal Structure from X-ray Powder Diffraction Data of Two Zirconium Diphosphonates Containing Piperazine Groups. Inorganic Chemistry, 2010, 49, 9664-9670.	1.9	60