
John Ciriello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8524238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Leptin: A Potential Link Between Obstructive Sleep Apnea and Obesity. Frontiers in Physiology, 2021, 12, 767318.	1.3	8
2	Persistent cytosolic Ca2+ increase induced by angiotensin II at nanomolar concentrations in acutely dissociated subfornical organ (SFO) neurons of rats. Brain Research, 2019, 1718, 137-147.	1.1	3
3	The cytosolic Ca2+ concentration in acutely dissociated subfornical organ (SFO) neurons of rats: Spontaneous Ca2+ oscillations and Ca2+ oscillations induced by picomolar concentrations of angiotensin II. Brain Research, 2019, 1704, 137-149.	1.1	2
4	Atrial arrhythmias and autonomic dysfunction in rats exposed to chronic intermittent hypoxia. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1160-H1168.	1.5	17
5	Effect of estrogen on vagal afferent projections to the brainstem in the female. Brain Research, 2016, 1636, 21-42.	1.1	18
6	Effect of intermittent hypoxia on arcuate nucleus in the leptin-deficient rat. Neuroscience Letters, 2016, 626, 112-118.	1.0	7
7	Chronic intermittent hypoxia induces changes in expression of synaptic proteins in the nucleus of the solitary tract. Brain Research, 2015, 1622, 300-307.	1.1	10
8	Leptin dependent changes in the expression of tropomyosin receptor kinase B protein in nucleus of the solitary tract to acute intermittent hypoxia. Neuroscience Letters, 2015, 602, 115-119.	1.0	1
9	Renal deafferentation: target for treatment of cardiovascular diseases involving sympathetic overactivity. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H970-H973.	1.5	0
10	Effects of angiotensin II on leptin and downstream leptin signaling in the carotid body during acute intermittent hypoxia. Neuroscience, 2015, 310, 430-441.	1.1	8
11	Sex and estrogen affect the distribution of urocortin-1 immunoreactivity in brainstem autonomic nuclei of the rat. Brain Research Bulletin, 2015, 116, 81-92.	1.4	3
12	Hypothalamic orexin-A (hypocretin-1) neuronal projections to the vestibular complex and cerebellum in the rat. Brain Research, 2014, 1579, 20-34.	1.1	15
13	Carotid chemoreceptor afferent projections to leptin receptor containing neurons in nucleus of the solitary tract. Peptides, 2014, 58, 30-35.	1.2	11
14	17β-Estradiol alters the response of subfornical organ neurons that project to supraoptic nucleus to plasma angiotensin II and hypernatremia. Brain Research, 2013, 1526, 54-64.	1.1	16
15	Plasma leptin inhibits the response of nucleus of the solitary tract neurons to aortic baroreceptor stimulation. Brain Research Bulletin, 2013, 97, 96-103.	1.4	6
16	Effects of hypocretin and norepinephrine interaction in bed nucleus of the stria terminalis on arterial pressure. Neuroscience, 2013, 255, 278-291.	1.1	11
17	Nesfatin-1 induces Fos expression and elicits dipsogenic responses in subfornical organ. Behavioural Brain Research, 2013, 250, 343-350.	1.2	10
18	Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure. Neuroscience, 2013, 250, 599-613,	1.1	21

#	Article	IF	CITATIONS
19	Effect of chronic intermittent hypoxia on leptin and leptin receptor protein expression in the carotid body. Brain Research, 2013, 1513, 51-60.	1.1	15
20	Leptin in nucleus of the solitary tract alters the cardiovascular responses to aortic baroreceptor activation. Peptides, 2013, 44, 1-7.	1.2	15
21	Caudal ventrolateral medulla mediates baroreceptor afferent inputs to subfornical organ angiotensin II responsive neurons. Brain Research, 2013, 1491, 127-135.	1.1	9
22	Intermittent Hypoxia Induces Leptin Signalling in the Carotid Body. FASEB Journal, 2013, 27, 1135.8.	0.2	0
23	Role of 17-beta estradiol in baroreflex sensitivity in the nucleus tractus solitarii via the autonomic system in ovariectomized rats. Neurosciences, 2013, 18, 126-32.	0.1	3
24	Stanniocalcin-1 in the subfornical organ inhibits the dipsogenic response to angiotensin II. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R921-R928.	0.9	9
25	Leptin signaling in the nucleus of the solitary tract alters the cardiovascular responses to activation of the chemoreceptor reflex. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R727-R736.	0.9	26
26	Intermittent hypoxia and systemic leptin administration induces pSTAT3 and Fos/Fra-1 in the carotid body. Brain Research, 2012, 1446, 56-70.	1.1	36
27	Gestational chronic intermittent hypoxia causes asymmetric growth restriction and alters cholesterol homeostasis in the liver of spragueâ€dawley rats. FASEB Journal, 2012, 26, 1101.3.	0.2	0
28	Systemic Leptin Alters Response of Nucleus Tractus Solitarius Neurons That Innervate Rostral Ventrolateral Medulla to Peripheral Chemoreceptors. FASEB Journal, 2012, 26, 1128.7.	0.2	0
29	Intermittent Hypoxia Alters Circulating Leptin Levels and the Activity of Proâ€opiomelanocortin (POMC) Hypothalamic Arcuate Nucleus Neurons. FASEB Journal, 2012, 26, .	0.2	0
30	Intracerebroventricular (ICV) injections of nesfatinâ€1 induces câ€fos expression in the rat forebrain FASEB Journal, 2009, 23, 1022.6.	0.2	0
31	Distribution of stanniocalcinâ€l (STCâ€l) binding sites within the rat brainstem and cerebellum. FASEB Journal, 2009, 23, 790.9.	0.2	0
32	Effects of Stanniocalcin in the Nucleus of the Solitary Tract (NTS) on Arterial Pressure (AP). FASEB Journal, 2009, 23, 959.9.	0.2	0
33	Collateral axonal projections from rostral ventromedial medullary nitric oxide synthase containing neurons to brainstem autonomic sites. Brain Research, 2008, 1211, 44-56.	1.1	7
34	Distribution of stanniocalcin binding sites in the lamina terminalis of the rat. Brain Research, 2008, 1218, 141-150.	1.1	7
35	Medullary pathways mediating the parasubthalamic nucleus depressor response. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2008, 294, R1276-R1284.	0.9	23
36	Cardiovascular Depressor Responses to Stimulation of the Parasubthalamic Nucleus. FASEB Journal, 2007, 21, A474.	0.2	1

#	Article	IF	CITATIONS
37	THE EFFECT OF GENDER ON THE DISTRIBUTION OF UROCORTIN NEURONS IN THE BRAINSTEM. FASEB Journal, 2006, 20, A738.	0.2	0
38	Induction of c-fos in forebrain circumventricular organs after renal artery stenosis. Brain Research, 2004, 995, 109-117.	1.1	5
39	Direct projections from caudal ventrolateral medullary depressor sites to the subfornical organ. Brain Research, 2004, 1003, 113-121.	1.1	11
40	Medullary and spinal cord projections from cardiovascular responsive sites in the rostral ventromedial medulla. Journal of Comparative Neurology, 2004, 469, 391-412.	0.9	28
41	Cardioacceleratory responses to hypocretin-1 injections into rostral ventromedial medulla. Brain Research, 2003, 991, 84-95.	1.1	74
42	Collateral axonal projections from hypothalamic hypocretin neurons to cardiovascular sites in nucleus ambiguus and nucleus tractus solitarius. Brain Research, 2003, 991, 133-141.	1.1	62
43	Identification of neurons containing orexin-B (hypocretin-2) immunoreactivity in limbic structures. Brain Research, 2003, 967, 123-131.	1.1	41
44	Estrogen alters the bradycardia response to hypocretin-1 in the nucleus tractus solitarius of the ovariectomized female. Brain Research, 2003, 978, 14-23.	1.1	27
45	Cardiovascular responses to hypocretin-1 in nucleus ambiguus of the ovariectomized female rat. Brain Research, 2003, 986, 148-156.	1.1	19
46	Cardiac effects of hypocretin-1 in nucleus ambiguus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R1611-R1620.	0.9	48
47	Cardiovascular effects of hypocretin-1 in nucleus of the solitary tract. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1369-H1377.	1.5	69
48	Renal afferents and hypertension. Current Hypertension Reports, 2002, 4, 136-142.	1.5	45
49	Co-localization of estrogen and angiotensin receptors within subfornical organ neurons. Brain Research, 1999, 837, 254-262.	1.1	49
50	Afferent renal inputs to paraventricular nucleus vasopressin and oxytocin neurosecretory neurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 275, R1745-R1754.	0.9	28
51	Cardiovascular depressor responses to stimulation of substantia nigra and ventral tegmental area. American Journal of Physiology - Heart and Circulatory Physiology, 1997, 273, H2549-H2557.	1.5	23
52	EFFECT OF GONADAL STEROIDS ON CENTRAL NEURONAL MECHANISMS CONTROLLING ARTERIAL PRESSURE IN THE FEMALE. Fundamental and Clinical Pharmacology, 1997, 11, 49s.	1.0	1
53	EFFECT OF OESTROGEN ON THE CARDIOVASCULAR RESPONSES TO GLUTAMATE STIMULATION OF BED NUCLEUS OF THE STRIA TERMINALIS. Fundamental and Clinical Pharmacology, 1997, 11, 105s.	1.0	7
54	Fos induction in central structures after afferent renal nerve stimulation. Brain Research, 1997, 753, 102-119.	1.1	68

#	Article	IF	CITATIONS
55	Neurotensin projections to subfornical organ from arcuate nucleus. Brain Research, 1996, 706, 323-327.	1.1	8
56	Arcuate nucleus inputs onto subfornical organ neurons that respond to plasma hypernatremia and angiotensin II. Brain Research, 1996, 707, 308-313.	1.1	13
57	Direct projections to subfornical organ from catecholaminergic neurons in the caudal nucleus of the solitary tract. Brain Research, 1996, 726, 227-232.	1.1	40
58	Convergence of ventrolateral medulla and aortic baroreceptor inputs onto amygdala neurons. Brain Research, 1995, 705, 71-78.	1.1	6
59	Glutamate stimulation of arcuate nucleus inhibits responses of subfornical organ neurons to plasma hypernatremia and angiotensin II. Neuroscience Letters, 1995, 198, 201-204.	1.0	8
60	Innervation of the amygdaloid complex by catecholaminergic cell groups of the ventrolateral medulla. Journal of Comparative Neurology, 1993, 332, 105-122.	0.9	79
61	Contribution of caudal ventrolateral medulla to the cardiovascular responses elicited by activation of bed nucleus of the stria terminalis. Brain Research, 1993, 606, 162-166.	1.1	55
62	Contribution of bed nucleus of the stria terminalis to the cardiovascular responses elicited by stimulation of the amygdala. Journal of the Autonomic Nervous System, 1993, 45, 61-75.	1.9	35
63	Functional identification of central pressor pathways originating in the subfornical organ. Canadian Journal of Physiology and Pharmacology, 1991, 69, 1035-1045.	0.7	26
64	Contribution of afferent renal nerves to the metabolic activity of central structures involved in the control of the circulation. Canadian Journal of Physiology and Pharmacology, 1989, 67, 1130-1139.	0.7	20
65	Contribution of nucleus medianus to the drinking and pressor responses to angiotensin II acting at subfornical organ. Brain Research, 1989, 488, 49-56.	1.1	34
66	Renal and cardiovascular afferent inputs to hypothalamic paraventriculo-spinal neurons. Neuroscience Letters, 1988, 95, 167-172.	1.0	13
67	Distribution and morphology of vasopressin-, neurophysin II-, and oxytocin-immunoreactive cell bodies in the forebrain of the cat. Journal of Comparative Neurology, 1987, 259, 211-236.	0.9	49
68	Function of the ventrolateral medulla in the control of the circulation. Brain Research Reviews, 1986, 11, 359-391.	9.1	321
69	Electrophysiological identification of forebrain connections of the subfornical organ. Brain Research, 1986, 382, 119-128.	1.1	32
70	Somatostatin-Like immunoreactivity in neurons, nerve terminals, and fibers of the cat spinal cord. Journal of Comparative Neurology, 1986, 243, 13-22.	0.9	50
71	Immunohistochemical identification of noradrenaline- and adrenaline-synthesizing neurons in the cat ventrolateral medulla. Journal of Comparative Neurology, 1986, 253, 216-230.	0.9	52
72	Segmental distribution of peptide-like immunoreactivity in cell bodies of the thoracolumbar sympathetic nuclei of the cat. Journal of Comparative Neurology, 1985, 240, 90-102.	0.9	108

#	Article	IF	CITATIONS
73	Segmental distribution of peptide- and 5HT-like immunoreactivity in nerve terminals and fibers of the thoracolumbar sympathetic nuclei of the cat. Journal of Comparative Neurology, 1985, 240, 103-116.	0.9	97
74	Effect of paraventricular nucleus lesions on cardiovascular responses elicited by stimulation of the subfornical organ in the rat. Canadian Journal of Physiology and Pharmacology, 1985, 63, 816-824.	0.7	59
75	Brainstem projections of aortic baroreceptor afferent fibers in the rat. Neuroscience Letters, 1983, 36, 37-42.	1.0	311
76	Central projections of afferent renal fibers in the rat: an anterograde transport study of horseradish peroxidase. Journal of the Autonomic Nervous System, 1983, 8, 273-285.	1.9	126
77	Glossopharyngeal and vagal afferent projections to the brain stem of the cat: A horseradish peroxidase study. Journal of the Autonomic Nervous System, 1981, 4, 63-79.	1.9	110