M S Gaafar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8524206/publications.pdf

Version: 2024-02-01

361413 361022 1,331 44 20 35 h-index citations g-index papers 45 45 45 866 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Dosimetric impact of some gamma radiation-induced polymeric materials incorporated silicate using thermoluminescence and ultrasonic techniques. Silicon, 2022, 14, 4391-4400.	3.3	11
2	Prediction of the Judd–Ofelt Parameters of Dy3+-Doped Lead Borosilicate Using Artificial Neural Network. Electronics (Switzerland), 2022, 11, 1045.	3.1	6
3	Role of dysprosium on some acoustic and physical properties of PbO-B2O3-SiO2 glasses. Results in Physics, 2021, 22, 103944.	4.1	18
4	Novel laser-assisted method for synthesis of SnO2/MWCNTs nanocomposite for water treatment from Cu (II). Diamond and Related Materials, 2021, 113, 108287.	3.9	55
5	Ultrasonic waves, mechanical properties and radiation shielding competence of Er3+ doped lead borate glasses: experimental and theoretical investigations. Journal of the Australian Ceramic Society, 2021, 57, 1163-1176.	1.9	5
6	Optical properties and laser prediction of strontium bismuth borate glasses doped with neodymium lons. Physica Scripta, 2021, 96, 105804.	2.5	5
7	Role of Sm+3 ions on structural, optical and radiation shielding properties of lead borosilicate glasses. Journal of Materials Research and Technology, 2021, 13, 1032-1044.	5.8	8
8	An ultrasonic study on ternary xPbO–(45-x)CuO–55B2O3 glasses. Ceramics International, 2021, 47, 27351-27360.	4.8	15
9	Study the influence of oxygen-deficient (δ = 0.135) in SrFeO _{3-δ} nanoparticles perovskite on structural, electrical and magnetic properties. Philosophical Magazine, 2021, 101, 710-728.	1.6	12
10	Elastic and spectroscopic properties of 0.7TeO2–0.1ZnO–0.1NaF–(0.1–x) WO3â~'xNd2O3 tellurite glasse Indian Journal of Physics, 2020, 94, 1633-1641.	² \$:	5
11	Influence of samarium on some acoustical, physical and radiation shielding characteristics of Bi2O3–ZnO–PbO glasses. Journal of Materials Science: Materials in Electronics, 2020, 31, 21502-21514.	2.2	6
12	Role of Neodymium on Some Acoustic and Physical Properties of Bi2O3 - B2O3- SrO Glasses. Journal of Materials Research and Technology, 2020, 9, 7252-7261.	5.8	30
13	Structural investigation and interpretation of some alkali lead borate glasses as radiation shielding materials. Journal of the Australian Ceramic Society, 2019, 55, 865-872.	1.9	11
14	The spectroscopic and elastic properties of borosilicate glasses doped with NdF 3. Journal of Non-Crystalline Solids, 2018, 490, 22-30.	3.1	17
15	Gamma ray interactions with samarium doped strontium phosphate glasses. Journal of Materials Science: Materials in Electronics, 2018, 29, 20907-20913.	2.2	4
16	Judd–Ofelt analysis of spectroscopic properties of Er3+ doped TeO2-BaO-ZnO glasses. Journal of Alloys and Compounds, 2017, 723, 1070-1078.	5.5	48
17	Ultrasonic relaxation of some CdO boro-tellurate glasses. Canadian Journal of Physics, 2016, 94, 1008-1016.	1.1	6
18	Acoustic relaxation of some lithium borate tungstate glasses at low temperatures. Journal of Alloys and Compounds, 2016, 657, 506-514.	5.5	8

#	Article	IF	CITATIONS
19	Acoustic relaxation of some lead niobium tellurite glasses. Bulletin of Materials Science, 2015, 38, 119-128.	1.7	2
20	High UV-shielding Performance of Zinc Oxide/High-Density Polyethylene Nanocomposites. Spectroscopy Letters, 2015, 48, 646-652.	1.0	23
21	Elastic properties of quaternaryTeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceramics International, 2015, 41, 9862-9866.	4.8	16
22	Polymer nanocomposites part 1. Journal of Thermoplastic Composite Materials, 2015, 28, 1343-1358.	4.2	31
23	Simulation of acoustic properties of some tellurite glasses. Ceramics International, 2014, 40, 7389-7394.	4.8	8
24	Structural investigations on some cadmium-borotellurate glasses using ultrasonic, FT-IR and X-ray techniques. Journal of Alloys and Compounds, 2014, 616, 625-632.	5.5	25
25	Study of rigidity of semiconducting vanadate glasses and its importance in use of coatings. Bulletin of Materials Science, 2014, 37, 661-667.	1.7	14
26	Structural studies and mechanical properties of some borate glasses doped with different alkali and cobalt oxides. Current Applied Physics, 2013, 13, 152-158.	2.4	67
27	Ultrasonic relaxation in Zinc–Borate glasses. Current Applied Physics, 2012, 12, 589-596.	2.4	30
28	Structural investigation and simulation of acoustic properties of some tellurite glasses using artificial intelligence technique. Journal of Alloys and Compounds, 2011, 509, 3566-3575.	5.5	35
29	Structural and elastic properties of eutectic Sn–Cu lead-free solder alloy containing small amount of Ag and In. Journal of Alloys and Compounds, 2011, 509, 7238-7246.	5 . 5	42
30	Effect of different types of carbon black on the mechanical and acoustic properties of ethylene–propylene–diene rubber. Journal of Applied Polymer Science, 2010, 117, 1502-1508.	2.6	8
31	Structural influence of PbO by means of FTIR and acoustics on calcium alumino-borosilicate glass system. Journal of Non-Crystalline Solids, 2010, 356, 1089-1095.	3.1	74
32	Physical and structural properties of some bismuth borate glasses. Materials Chemistry and Physics, 2009, 115, 280-286.	4.0	112
33	Ultrasonic studies on alkali borate tungstate glasses. Journal of Physics and Chemistry of Solids, 2009, 70, 173-179.	4.0	38
34	Structural studies of some phospho-borate glasses using ultrasonic pulse–echo technique, DSC and IR spectroscopy. Physica B: Condensed Matter, 2009, 404, 1668-1673.	2.7	45
35	Ultrasonic and FT-IR studies on Bi ₂ O ₃ –Er ₂ O ₃ –PbO glasses. Philosophical Magazine, 2009, 89, 2213-2224.	1.6	26
36	Elastic properties and structural studies on some zinc-borate glasses derived from ultrasonic, FT-IR and X-ray techniques. Journal of Alloys and Compounds, 2009, 475, 535-542.	5.5	134

#	Article	lF	CITATIONS
37	Effect of Doping by Different Transition Metals on the Acoustical Properties of Alkali Borate Glasses. Acta Physica Polonica A, 2009, 115, 671-678.	0.5	18
38	Structural Analysis of Some Alkali Diborate Glasses. Acta Physica Polonica A, 2009, 116, 211-216.	0.5	19
39	Elastic and structural properties of vanadium–lithium–borate glasses. Philosophical Magazine, 2008, 88, 1705-1722.	1.6	26
40	Ultrasonic study on some borosilicate glasses doped with different transition metal oxides. Solid State Communications, 2007, 144, 478-483.	1.9	47
41	Mechanical and structural studies on sodium borosilicate glasses doped with Er2O3 using ultrasonic velocity and FTIR spectroscopy. Physica B: Condensed Matter, 2007, 388, 294-302.	2.7	124
42	Ultrasonic studies on network structure of ternary TeO2–WO3–K2O glass system. Physica B: Condensed Matter, 2004, 348, 46-55.	2.7	79
43	Compatibility studies on some rubber blend systems by ultrasonic techniques. Materials Chemistry and Physics, 2002, 74, 23-32.	4.0	18
44	Structural Investigation of Semi Crystalline LDPE Nano-polymer. Aljouf University Medical Journal, 0, , 24-29.	0.1	0