List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8524093/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	C ₃ N ₅ : A Low Bandgap Semiconductor Containing an Azo-Linked Carbon Nitride Framework for Photocatalytic, Photovoltaic and Adsorbent Applications. Journal of the American Chemical Society, 2019, 141, 5415-5436.	13.7	464
2	Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Applied Catalysis B: Environmental, 2016, 181, 352-362.	20.2	286
3	Sunlight-driven water-splitting using two-dimensional carbon based semiconductors. Journal of Materials Chemistry A, 2018, 6, 12876-12931.	10.3	215
4	Mixedâ€Valence Singleâ€Atom Catalyst Derived from Functionalized Graphene. Advanced Materials, 2019, 31, e1900323.	21.0	129
5	Cobalt Phthalocyanine Immobilized on Graphene Oxide: An Efficient Visibleâ€Active Catalyst for the Photoreduction of Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 6154-6161.	3.3	126
6	High rate CO2 photoreduction using flame annealed TiO2 nanotubes. Applied Catalysis B: Environmental, 2019, 243, 522-536.	20.2	123
7	Nickel Decorated on Phosphorous-Doped Carbon Nitride as an Efficient Photocatalyst for Reduction of Nitrobenzenes. Nanomaterials, 2016, 6, 59.	4.1	121
8	Enhanced charge separation in g-C ₃ N ₄ –BiOI heterostructures for visible light driven photoelectrochemical water splitting. Nanoscale Advances, 2019, 1, 1460-1471.	4.6	115
9	Core–shell structured reduced graphene oxide wrapped magnetically separable rGO@CuZnO@Fe3O4 microspheres as superior photocatalyst for CO2 reduction under visible light. Applied Catalysis B: Environmental, 2017, 205, 654-665.	20.2	111
10	Optical control of selectivity of high rate CO2 photoreduction via interband- or hot electron Z-scheme reaction pathways in Au-TiO2 plasmonic photonic crystal photocatalyst. Applied Catalysis B: Environmental, 2020, 267, 118644.	20.2	92
11	Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waals Heterojunctions. Chemistry of Materials, 2021, 33, 9012-9092.	6.7	88
12	PEGylated magnetic nanoparticles (PEG@Fe 3 O 4) as cost effective alternative for oxidative cyanation of tertiary amines via C H activation. Applied Catalysis A: General, 2015, 498, 25-31.	4.3	81
13	A [Fe(bpy) ₃] ²⁺ grafted graphitic carbon nitride hybrid for visible light assisted oxidative coupling of benzylamines under mild reaction conditions. Green Chemistry, 2016, 18, 2514-2521.	9.0	78
14	Photocatalytic reduction of carbon dioxide to methanol using a ruthenium trinuclear polyazine complex immobilized on graphene oxide under visible light irradiation. Journal of Materials Chemistry A, 2014, 2, 11246.	10.3	74
15	Visible light assisted photocatalytic reduction of CO ₂ using a graphene oxide supported heteroleptic ruthenium complex. Green Chemistry, 2015, 17, 1605-1609.	9.0	74
16	Metal-organic hybrid: Photoreduction of CO2 using graphitic carbon nitride supported heteroleptic iridium complex under visible light irradiation. Carbon, 2017, 123, 371-379.	10.3	74
17	Arrays of TiO2 nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting. Carbon, 2018, 137, 174-187.	10.3	70
18	Hexamolybdenum clusters supported on graphene oxide: Visible-light induced photocatalytic reduction of carbon dioxide into methanol. Carbon, 2015, 94, 91-100.	10.3	69

#	Article	IF	CITATIONS
19	Visible light driven photocatalytic oxidation of thiols to disulfides using iron phthalocyanine immobilized on graphene oxide as a catalyst under alkali free conditions. RSC Advances, 2014, 4, 50331-50337.	3.6	66
20	Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1-xCdxS homojunction. IScience, 2021, 24, 102109.	4.1	61
21	Visible Light Assisted Photocatalytic [3 + 2] Azide–Alkyne "Click―Reaction for the Synthesis of 1,4-Substituted 1,2,3-Triazoles Using a Novel Bimetallic Ru–Mn Complex. ACS Sustainable Chemistry and Engineering, 2016, 4, 69-75.	6.7	56
22	A novel Ru/TiO ₂ hybrid nanocomposite catalyzed photoreduction of CO ₂ to methanol under visible light. Nanoscale, 2015, 7, 15258-15267.	5.6	55
23	Photoreduction of CO2 to methanol with hexanuclear molybdenum [Mo6Br14]2â^ cluster units under visible light irradiation. RSC Advances, 2014, 4, 10420.	3.6	50
24	Visible light-induced surface initiated atom transfer radical polymerization of methyl methacrylate on titania/reduced graphene oxide nanocomposite. RSC Advances, 2015, 5, 21189-21196.	3.6	49
25	Consistently High <i>V</i> _{oc} Values in p-i-n Type Perovskite Solar Cells Using Ni ³⁺ -Doped NiO Nanomesh as the Hole Transporting Layer. ACS Applied Materials & Interfaces, 2020, 12, 11467-11478.	8.0	48
26	Noble Metal Free, Visible Light Driven Photocatalysis Using TiO 2 Nanotube Arrays Sensitized by Pâ€Doped C 3 N 4 Quantum Dots. Advanced Optical Materials, 2020, 8, 1901275.	7.3	48
27	Photocatalytic Mechanism Control and Study of Carrier Dynamics in CdS@C ₃ N ₅ Core–Shell Nanowires. ACS Applied Materials & Interfaces, 2021, 13, 47418-47439.	8.0	48
28	Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS Nano, 2022, 16, 8557-8618.	14.6	48
29	Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for CO ₂ reduction under visible light irradiation. RSC Advances, 2015, 5, 54929-54935.	3.6	47
30	Cobalt-entrenched N-, O-, and S-tridoped carbons as efficient multifunctional sustainable catalysts for base-free selective oxidative esterification of alcohols. Green Chemistry, 2018, 20, 3542-3556.	9.0	47
31	Synthesis of flower-like magnetite nanoassembly: Application in the efficient reduction of nitroarenes. Scientific Reports, 2017, 7, 11585.	3.3	44
32	Robust Polymer Nanocomposite Membranes Incorporating Discrete TiO2 Nanotubes for Water Treatment. Nanomaterials, 2019, 9, 1186.	4.1	43
33	A TiO2 immobilized Ru(ii) polyazine complex: a visible-light active photoredox catalyst for oxidative cyanation of tertiary amines. Journal of Materials Chemistry A, 2014, 2, 4514.	10.3	42
34	Magnetic Fe3O4@MgAl–LDH composite grafted with cobalt phthalocyanine as an efficient heterogeneous catalyst for the oxidation of mercaptans. Journal of Molecular Catalysis A, 2015, 401, 48-54.	4.8	42
35	Sustainable Synthesis of Nanoscale Zerovalent Iron Particles for Environmental Remediation. ChemSusChem, 2020, 13, 3288-3305.	6.8	42
36	Visible light assisted reduction of nitrobenzenes using Fe(bpy)3+2/rGO nanocomposite as photocatalyst. Applied Surface Science, 2016, 386, 103-114.	6.1	40

#	Article	IF	CITATIONS
37	Seven-coordinated chiral uranyl(VI) salen complex as effective catalyst for C–H bond activation of dialkylanilines under visible light. Polyhedron, 2017, 124, 177-183.	2.2	40
38	Asymmetric Multipole Plasmon-Mediated Catalysis Shifts the Product Selectivity of CO ₂ Photoreduction toward C ₂₊ Products. ACS Applied Materials & Interfaces, 2021, 13, 7248-7258.	8.0	40
39	Polymeric carbon nitride-based photocatalysts for photoreforming of biomass derivatives. Green Chemistry, 2021, 23, 7435-7457.	9.0	39
40	Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems Based on SnIP. Advanced Functional Materials, 2019, 29, 1900233.	14.9	37
41	Graphene oxide immobilized copper phthalocyanine tetrasulphonamide: the first heterogenized homogeneous catalyst for dimethylcarbonate synthesis from CO ₂ and methanol. Journal of Materials Chemistry A, 2014, 2, 18861-18866.	10.3	35
42	Organic inorganic hybrid cobalt phthalocyanine/polyaniline as efficient catalyst for aerobic oxidation of alcohols in liquid phase. Tetrahedron Letters, 2015, 56, 3948-3953.	1.4	33
43	Heterostructured nanocomposite tin phthalocyanine@mesoporous ceria (SnPc@CeO ₂) for photoreduction of CO ₂ in visible light. RSC Advances, 2015, 5, 42414-42421.	3.6	33
44	Air- and water-stable halide perovskite nanocrystals protected with nearly-monolayer carbon nitride for CO2 photoreduction and water splitting. Applied Surface Science, 2022, 592, 153276.	6.1	31
45	Vapor Deposition of Semiconducting Phosphorus Allotropes into TiO ₂ Nanotube Arrays for Photoelectrocatalytic Water Splitting. ACS Applied Nano Materials, 2019, 2, 3358-3367.	5.0	30
46	A surface plasmon laser. Journal of Applied Physics, 2008, 104, .	2.5	28
47	Graphene oxide grafted with iridium complex as a superior heterogeneous catalyst for chemical fixation of carbon dioxide to dimethylformamide. Carbon, 2016, 100, 632-640.	10.3	27
48	The effect of oxygen flow rate on metal–insulator transition (MIT) characteristics of vanadium dioxide (VO2) thin films by pulsed laser deposition (PLD). Applied Surface Science, 2020, 529, 146995.	6.1	25
49	A Prussian blue/carbon dot nanocomposite as an efficient visible light active photocatalyst for C-H activation of amines. Photochemical and Photobiological Sciences, 2016, 15, 1282-1288.	2.9	24
50	Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2021, 13, 42741-42752.	8.0	24
51	Lightâ€induced controlled free radical polymerization of methacrylates using ironâ€based photocatalyst in visible light. Journal of Polymer Science Part A, 2015, 53, 2739-2746.	2.3	23
52	Heterojunctions of halogen-doped carbon nitride nanosheets and BiOI for sunlight-driven water-splitting. Nanotechnology, 2020, 31, 084001.	2.6	23
53	Carbon Nitride Grafted Cobalt Complex (Co@npg ₃ N ₄) for Visible Lightâ"Assisted Esterification of Aldehydes. ChemistrySelect, 2017, 2, 3437-3443.	1.5	22
54	Octahedral rhenium K4[Re6S8(CN)6] and Cu(OH)2 cluster modified TiO2 for the photoreduction of CO2 under visible light irradiation. Applied Catalysis A: General, 2015, 499, 32-38.	4.3	21

#	Article	IF	CITATIONS
55	A ruthenium-carbamato-complex derived from a siloxylated amine and carbon dioxide for the oxidative α-cyanation of aromatic and cyclic tertiary amines. RSC Advances, 2013, 3, 24013.	3.6	20
56	Resistance of Superhydrophobic Surface-Functionalized TiO2 Nanotubes to Corrosion and Intense Cavitation. Nanomaterials, 2018, 8, 783.	4.1	18
57	Microfabrication of the Ammonia Plasma-Activated Nickel Nitride–Nickel Thin Film for Overall Water Splitting in the Microfluidic Membraneless Electrolyzer. ACS Applied Energy Materials, 2021, 4, 9639-9652.	5.1	18
58	A bridged ruthenium dimer (Ru–Ru) for photoreduction of CO2 under visible light irradiation. Journal of Industrial and Engineering Chemistry, 2018, 61, 381-387.	5.8	17
59	Nanophotonic enhancement and improved electron extraction in perovskite solar cells using near-horizontally aligned TiO2 nanorods. Journal of Power Sources, 2019, 417, 176-187.	7.8	17
60	Photo-induced reduction of CO2using a magnetically separable Ru-CoPc@TiO2@SiO2@Fe3O4catalyst under visible light irradiation. Dalton Transactions, 2015, 44, 4546-4553.	3.3	16
61	Remarkable self-organization and unusual conductivity behavior in cellulose nanocrystal-PEDOT: PSS nanocomposites. Journal of Materials Science: Materials in Electronics, 2019, 30, 1390-1399.	2.2	16
62	Synthesis and Characterization of Zinc Phthalocyanine-Cellulose Nanocrystal (CNC) Conjugates: Toward Highly Functional CNCs. ACS Applied Materials & Interfaces, 2020, 12, 43992-44006.	8.0	16
63	Visible light assisted hydrogen generation from complete decomposition of hydrous hydrazine using rhodium modified TiO2 photocatalysts. Photochemical and Photobiological Sciences, 2017, 16, 1036-1042.	2.9	15
64	Threshold hydrophobicity for inhibition of salt scale formation on SAM-modified titania nanotube arrays. Applied Surface Science, 2019, 473, 282-290.	6.1	15
65	Photo-assisted oxidation of thiols to disulfides using cobalt "Nanorust―under visible light. New Journal of Chemistry, 2015, 39, 6193-6200.	2.8	13
66	Water-splitting photoelectrodes consisting of heterojunctions of carbon nitride with a p-type low bandgap double perovskite oxide. Nanotechnology, 2021, 32, 485407.	2.6	13
67	CVD grown nitrogen doped graphene is an exceptional visible-light driven photocatalyst for surface catalytic reactions. 2D Materials, 2020, 7, 015002.	4.4	12
68	Vapor growth of binary and ternary phosphorus-based semiconductors into TiO ₂ nanotube arrays and application in visible light driven water splitting. Nanoscale Advances, 2019, 1, 2881-2890.	4.6	11
69	Metal-Free Sulfonate/Sulfate-Functionalized Carbon Nitride for Direct Conversion of Glucose to Levulinic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 6230-6243.	6.7	10
70	Mapping the surface potential, charge density and adhesion of cellulose nanocrystals using advanced scanning probe microscopy. Carbohydrate Polymers, 2020, 246, 116393.	10.2	9
71	Singleâ€Atom Catalysis: Mixedâ€Valence Singleâ€Atom Catalyst Derived from Functionalized Graphene (Adv.) ⁻	Tj ETQq1 21.0	1 0.784314 rg
72	TiO2-HfN Radial Nano-Heterojunction: A Hot Carrier Photoanode for Sunlight-Driven Water-Splitting. Catalysts, 2021, 11, 1374.	3.5	8

#	Article	IF	CITATIONS
73	Effect of morphology on the photoelectrochemical performance of nanostructured Cu ₂ O photocathodes. Nanotechnology, 2021, 32, 374001.	2.6	7
74	Revealing and Attenuating the Electrostatic Properties of Tubulin and Its Polymers. Small, 2021, 17, 2003560.	10.0	7
75	Zinc phthalocyanine conjugated cellulose nanocrystals for memory device applications. Nanotechnology, 2022, 33, 055703.	2.6	7
76	Hot hole transfer from Ag nanoparticles to multiferroic YMn ₂ O ₅ nanowires enables superior photocatalytic activity. Journal of Materials Chemistry C, 2022, 10, 4128-4139.	5.5	7
77	Microwave-assisted synthesis, characterization, and antimicrobial activity of some odorant Schiff bases derived from naturally occurring carbonyl compounds and anthranilic acid. Synthetic Communications, 2016, 46, 2053-2062.	2.1	6
78	A graphene/hemin hybrid material as an efficient green catalyst for stereoselective olefination of aldehydes. RSC Advances, 2015, 5, 100011-100017.	3.6	5
79	Single-atom catalysts for biomass-derived drop-in chemicals. , 2022, , 63-100.		4
80	Kinetics and feasibility studies of thiol oxidation using magnetically separable Mg-Al layered double hydroxide supported cobalt phthalocyanine catalyst. Fuel Processing Technology, 2017, 162, 135-146.	7.2	3
81	Nanostructured Composite Materials for CO2 Activation. , 2019, , 174-200.		2
82	Hot carrier photocatalysis using bimetallic Au@Pt hemispherical core–shell nanoislands. Journal of Materials Science: Materials in Electronics, 2022, 33, 18134-18155.	2.2	2
83	All-solid-state formation of titania nanotube arrays and their application in photoelectrochemical water splitting. Journal of Materials Science: Materials in Electronics, 2018, 29, 16590-16597.	2.2	1
84	Rapid and Efficient Synthesis, Characterization and Antimicrobial Activity of Some Methylanthranilate Derived Odorant Schiff Bases. Letters in Organic Chemistry, 2018, 15, 620-626.	0.5	1
85	Hybrid Materials: Flexible and Ultrasoft Inorganic 1D Semiconductor and Heterostructure Systems Based on SnIP (Adv. Funct. Mater. 18/2019). Advanced Functional Materials, 2019, 29, 1970120. 	14.9	0
86	Revealing and Attenuating the Electrostatic Properties of Tubulin and Microtubules. Biophysical Journal, 2020, 118, 622a.	0.5	0